login
A319816
Number of partitions of n into exactly six positive triangular numbers.
6
1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 4, 4, 5, 3, 5, 4, 6, 6, 4, 7, 6, 8, 7, 7, 7, 8, 10, 7, 10, 10, 10, 10, 11, 10, 12, 13, 12, 13, 14, 14, 14, 16, 14, 16, 16, 14, 20, 19, 18, 17, 21, 18, 22, 21, 20, 22, 26, 23, 21, 25, 24, 29, 26, 23, 29, 30
OFFSET
6,10
LINKS
FORMULA
a(n) = [x^n y^6] 1/Product_{j>=1} (1-y*x^A000217(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0,
`if`(issqr(8*n+1), n, h(n-1)))
end:
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(
k>n or i*k<n, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
end:
a:= n-> b(n, h(n), 6):
seq(a(n), n=6..120);
CROSSREFS
Column k=6 of A319797.
Cf. A000217.
Sequence in context: A137921 A064876 A262689 * A343437 A348242 A105517
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2018
STATUS
approved