login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061927 a(n) = n(n+1)(2n+1)(n^2+n+3)/30. 11
0, 1, 9, 42, 138, 363, 819, 1652, 3060, 5301, 8701, 13662, 20670, 30303, 43239, 60264, 82280, 110313, 145521, 189202, 242802, 307923, 386331, 479964, 590940, 721565, 874341, 1051974, 1257382, 1493703, 1764303, 2072784, 2422992, 2819025 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of magic labelings of the cubical graph of magic sum n-1 [Ahmed]. - R. J. Mathar, Jan 25 2007

If Y_i (i=1,2,3) are 2-blocks of a (n+3)-set X then a(n-4) is the number of 8-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007

The cube graph is also the prism graph I X C_4, so this is related to the number of magic labelings of other prism & related graphs. - David J. Seal, Sep 13 2017

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1000

M. M. Ahmed, Algebraic Combinatorics of Magic Squares, arXiv:math/0405476 [math.CO], 2004, p. 73.

Shalosh B. Ekhad, Doron Zeilberger, There are (1/30)(r+1)(r+2)(2r+3)(r^2+3r+5) Ways For the Four Teams of a World Cup Group to Each Have r Goals For and r Goals Against [Thanks to the Soccer Analog of Prop. 4.6.19 of Richard Stanley's (Classic!) EC1], arXiv:1407.1919 [math.CO], 2014.

Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq. (5), m=3.

Milan Janjic, Two Enumerative Functions

M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.

R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973. [Cached copy, with permission] See p. 32.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) = a(n-1) + A014820(n) = A061926(9, n).

G.f.: x*(1+x)^3/(-1+x)^6 = 20/(-1+x)^5 + 1/(-1+x)^2 + 7/(-1+x)^3 + 18/(-1+x)^4 + 8/(-1+x)^6. - R. J. Mathar, Nov 18 2007

MATHEMATICA

Table[n (n + 1) (2 n + 1) (n^2 + n + 3)/30, {n, 0, 33}] (* or *)

CoefficientList[Series[x (1 + x)^3/(-1 + x)^6, {x, 0, 33}], x] (* Michael De Vlieger, Sep 15 2017 *)

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 9, 42, 138, 363}, 40] (* Harvey P. Dale, Apr 18 2018 *)

PROG

(PARI) { for (n=0, 1000, write("b061927.txt", n, " ", n*(n + 1)*(2*n + 1)*(n^2 + n + 3)/30) ) } \\ Harry J. Smith, Jul 29 2009

CROSSREFS

Cf. A006325, A019298, A244497, A244873, A289992, A292281, partial sums of A014820, A006975 (binomial transform shifted left).

Sequence in context: A269053 A027441 A000971 * A292481 A051923 A180670

Adjacent sequences:  A061924 A061925 A061926 * A061928 A061929 A061930

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, May 17 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 23:49 EDT 2019. Contains 325092 sequences. (Running on oeis4.)