login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014820 a(n) = (1/3)*(n^2+2*n+3)*(n+1)^2. 25
1, 8, 33, 96, 225, 456, 833, 1408, 2241, 3400, 4961, 7008, 9633, 12936, 17025, 22016, 28033, 35208, 43681, 53600, 65121, 78408, 93633, 110976, 130625, 152776, 177633, 205408, 236321, 270600, 308481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of 4 X 4 pandiagonal magic squares with sum 2n. - Sharon Sela (sharonsela(AT)hotmail.com), May 10 2002

Figurate numbers based on the 4-dimensional regular convex polytope called the 16-cell, hexadecachoron, 4-cross polytope or 4-hyperoctahedron with Schlaefli symbol {3,3,4}. a(n)=(n^2*(n^2+2))/3 if the offset were 1. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 18 2009

If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 7-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007

Equals binomial transform of [1, 7, 18, 20, 8, 0, 0, 0, ...], where (1, 7, 18, 20, 8) = row 4 of the Chebyshev triangle A081277. Also = row 4 of the array in A142978. - Gary W. Adamson, Jul 19 2008

REFERENCES

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.

Maya Ahmed, Jesus De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.

Milan Janjic, Two Enumerative Functions

M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.

Eric Weisstein's World of Mathematics, 16-Cell

FORMULA

Or, a(n-1) = n^2*(n^2+2)/3. - Corrected by R. J. Mathar, Jul 18 2009

From Vladeta Jovovic, Apr 03 2002: (Start)

G.f.: (1+x)^3/(1-x)^5.

Recurrence: a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). (End)

a(n-1) = C(n+3,4) + 3 C(n+2,4) + 3 C(n+1,4) + C(n,4).

Sum_{n>=0}1/((1/3*(n^2+2*n+3))*(n+1)^2) = (1/4)*Pi^2-3*sqrt(2)*Pi*coth(Pi*sqrt(2))*(1/8)+3/8 = 1.1758589... - Stephen Crowley, Jul 14 2009

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=1, a(1)=8, a(2)=33, a(3)=96, a(4)=225. - Yosu Yurramendi, Sep 03 2013

MAPLE

al:=proc(s, n) binomial(n+s-1, s); end; be:=proc(d, n) local r; add( (-1)^r*binomial(d-1, r)*2^(d-1-r)*al(d-r, n), r=0..d-1); end; [seq(be(4, n), n=0..100)];

MATHEMATICA

LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 33, 96, 225}, 31] (* Jean-Fran├žois Alcover, Jan 17 2018 *)

PROG

(MAGMA) [(1/3)*(n^2+2*n+3)*(n+1)^2: n in [0..40]]; // Vincenzo Librandi, May 22 2011

(PARI) a(n)=(n+1)^2*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Apr 17 2012

(R)

a <- c(1, 8, 33, 96, 225)

for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]

a # Yosu Yurramendi, Sep 03 2013

CROSSREFS

Cf. A000332, A000583, A005900, A069038, A069039, A070212, A081277, A092181, A092182, A092183, A099175, A099193, A099195, A099196, A099197, A142978.

Sequence in context: A210698 A114105 A316148 * A070736 A051836 A278670

Adjacent sequences:  A014817 A014818 A014819 * A014821 A014822 A014823

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Formula index corrected by R. J. Mathar, Jul 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 11:05 EDT 2018. Contains 315389 sequences. (Running on oeis4.)