This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019298 Number of balls in pyramid with base either a regular hexagon or a hexagon with alternate sides differing by 1 (balls in hexagonal pyramid of height n taken from hexagonal close-packing). 34
 0, 1, 4, 11, 23, 42, 69, 106, 154, 215, 290, 381, 489, 616, 763, 932, 1124, 1341, 1584, 1855, 2155, 2486, 2849, 3246, 3678, 4147, 4654, 5201, 5789, 6420, 7095, 7816, 8584, 9401, 10268, 11187, 12159, 13186 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Alternately add and subtract successively longer sets of integers: 0; 1 = 0+1; -4 = 1-2-3; 11 = -4+4+5+6; -23 = 11-7-8-9-10; 42 = -23+11+12+13+14+15; -69 = 42-16-17-18-19-20-21; ... then take absolute values. - Walter Carlini, Aug 28 2003 Number of 3 X 3 symmetric matrices with nonnegative integer entries, such that every row (and column) sum equals n-1. Equals Sum_{0..n} of "three-quarter squares" sequence (A077043) - Philipp M. Buluschek (kitschen(AT)romandie.com), Aug 12 2007 a(n) = sum of n-th row in A220075, n > 0. - Reinhard Zumkeller, Dec 03 2012 Sum of all the smallest parts in the partitions of 3n into three parts (see example). - Wesley Ivan Hurt, Jan 23 2014 For n > 0, a(n) = number of (nonnegative integer) magic labelings of the prism graph Y_3 with magic sum n - 1. - L. Edson Jeffery, Sep 09 2017 Or number of magic labelings of LOOP X C_3 with magic sum n - 1, where LOOP is the 1-vertex, 1-loop-edge graph, as Y_k = I X C_k and LOOP X C_k have the same numbers of magic labelings when k is odd. - David J. Seal, Sep 13 2017 REFERENCES R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_3(lambda). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.14(a), p. 452. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 13. L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33 (1966), 771-782. MR0201332 (34 #1216). R. P. Stanley, Magic labelings of graphs, symmetric magic squares,..., Duke Math. J. 43 (3) (1976) 511-531, Section 5, F_3(x). Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1). R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission] FORMULA a(n) = floor((n^2+1)(2n+3)/8). G.f.: x(x^2+x+1)/((x+1)(x-1)^4). a(n) = floor((2n^3 + 3n^2 + 2n)/8); also nearest integer to ((n+1)^4 - n^4)/16. a(n) = (4n^3 + 6n^2 + 4n+1 - (-1)^n)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Mar 06 2004 a(n) = Sum_{i=1..n} i^2 - floor(i^2/4) = Sum_{i=1..n} i * (2n - 2i + 1 - floor((n - i + 1)/2) ). - Wesley Ivan Hurt, Jan 23 2014 G.f.: x*(1+x+x^2)/((1-x)^4*(1+x)). EXAMPLE Add last column for a(n) (n > 0).                                                 13+ 1 + 1                                                 12+ 2 + 1                                                 11+ 3 + 1                                                 10+ 4 + 1                                                 9 + 5 + 1                                                 8 + 6 + 1                                                 7 + 7 + 1                                     10+ 1 + 1   11+ 2 + 2                                     9 + 2 + 1   10+ 3 + 2                                     8 + 3 + 1   9 + 4 + 2                                     7 + 4 + 1   8 + 5 + 2                                     6 + 5 + 1   7 + 6 + 2                         7 + 1 + 1   8 + 2 + 2   9 + 3 + 3                         6 + 2 + 1   7 + 3 + 2   8 + 4 + 3                         5 + 3 + 1   6 + 4 + 2   7 + 5 + 3                         4 + 4 + 1   5 + 5 + 2   6 + 6 + 3             4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4             3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4 1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5    3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n ---------------------------------------------------------------------     1           4           11          23          42      ..  a(n) MAPLE series(x*(x^2+x+1)/(x+1)/(x-1)^4, x, 80); MATHEMATICA Table[ Ceiling[3*n^2/4], {n, 0, 37}] // Accumulate (* Jean-François Alcover, Dec 20 2012, after Philipp M. Buluschek's comment *) CoefficientList[Series[x (x^2 + x + 1) / ((x + 1) (x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 28 2013 *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 11, 23}, 38] (* L. Edson Jeffery, Sep 09 2017 *) PROG (PARI) a(n)=(n^2+1)*(2*n+3)\8 \\ Charles R Greathouse IV, Apr 04 2013 (MAGMA) [Floor((n^2+1)*(2*n+3)/8): n in [0..80]]; // Vincenzo Librandi, Jul 28 2013 CROSSREFS Cf. A053493, A077043 (first differences), A002717. Cf. A061927, A244497, A292281, A244873, A289992 (# of magic labelings of prism graph Y_k = I X C_k, for k = 4,5,6,7,8, up to an offset). Cf. A006325, A244879, A244880 (# of magic labelings of LOOP X C_k, for k = 4,6,8, up to an offset). Sequence in context: A131177 A092498 A301165 * A237586 A173702 A244281 Adjacent sequences:  A019295 A019296 A019297 * A019299 A019300 A019301 KEYWORD nonn,easy,nice AUTHOR Eric E Blom (eblom(AT)REM.re.uokhsc.edu) EXTENSIONS Error in n=8 term corrected May 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 15:05 EDT 2018. Contains 315391 sequences. (Running on oeis4.)