login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180670 a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1. 5
0, 0, 1, 9, 42, 140, 383, 925, 2056, 4316, 8705, 17069, 32810, 62192, 116743, 217673, 404000, 747496, 1380177, 2544865, 4688186, 8631620, 15886111, 29230725, 53776968, 98926372, 181971057, 334716197, 615660634, 1132400520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The a(n+2) represent the Kn15 and Kn25 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

LINKS

Table of n, a(n) for n=0..29.

Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-3,3,-3,1).

FORMULA

a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.

a(n) = a(n-1)+A001590(n+7)-(12+4*n+4*n^2) with a(0)=0.

a(n) = sum(A008412(m)*A000073(n-m),m=0..n).

a(n+2) = add(A008288(n-k+4,k+4),k=0..floor(n/2)).

GF(x) = (x^2*(1+x)^4)/((1-x)^4*(1-x-x^2-x^3)).

MAPLE

nmax:=29: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 od: seq(a(n), n=0..nmax);

CROSSREFS

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Sequence in context: A061927 A292481 A051923 * A268262 A293101 A084899

Adjacent sequences:  A180667 A180668 A180669 * A180671 A180672 A180673

KEYWORD

easy,nonn

AUTHOR

Johannes W. Meijer, Sep 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 18:06 EST 2019. Contains 319365 sequences. (Running on oeis4.)