This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060016 Triangle T(n,k) = number of partitions of n into k distinct parts, 1<=k<=n. 11
 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 4, 3, 0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS Also number of partitions of n-k(k+1)/2 into at most k parts (not necessarily distinct). A025147(n) = Sum(a(n-k+1,k-1): 1=0, z^n * q^((n^2+n)/2) / prod(k=1..n, 1-q^k ) ), rows by powers of q, columns by powers of z; includes row 0 (drop term for n=0 for this triangle, see PARI code); setting z=1 gives g.f. for A000009; cf. to g.f. for A072574. [Joerg Arndt, Oct 20 2012] EXAMPLE Triangle starts [ 1]  1, [ 2]  1, 0, [ 3]  1, 1, 0, [ 4]  1, 1, 0, 0, [ 5]  1, 2, 0, 0, 0, [ 6]  1, 2, 1, 0, 0, 0, [ 7]  1, 3, 1, 0, 0, 0, 0, [ 8]  1, 3, 2, 0, 0, 0, 0, 0, [ 9]  1, 4, 3, 0, 0, 0, 0, 0, 0, [10]  1, 4, 4, 1, 0, 0, 0, 0, 0, 0, [11]  1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, [12]  1, 5, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0, [13]  1, 6, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, [14]  1, 6, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, ... T(8,3)=2 since 8 can be written in 2 ways as the sum of 3 distinct positive integers: 5+2+1 and 4+3+1. MAPLE b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)       -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))     end: T:= proc(n) local l; l:= subsop(1=NULL, b(n, n));       l[], 0\$(n-nops(l))     end: seq (T(n), n=1..20);  # Alois P. Heinz, Dec 12 2012 MATHEMATICA Flatten[Table[Length[Select[IntegerPartitions[n, {k}], Max[Transpose[ Tally[#]][[2]]]==1&]], {n, 20}, {k, n}]] (* Harvey P. Dale, Feb 27 2012 *) T[_, 1] = 1; T[n_, k_] /; 1

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.