The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060013 New record highs reached in A060000. 6
 1, 2, 3, 5, 9, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2). FORMULA For n>4: a(n) =2a(n-1)-3. For n>3: a(n) =3*2^(n-3)+3 =3*A000051(n-3) =A007283(n-3)+3. a(n+1) = A060000(a(n)+1), a(1) = 1. - Reinhard Zumkeller, Mar 04 2008 G.f.: -x*(x^2-x+1)*(2*x^3+2*x^2-1) / ((x-1)*(2*x-1)). - Colin Barker, Jan 12 2013 MATHEMATICA h = f = {1, 2}; a = 1; b = 2; Do[ g = Sort[ h ]; If[ g[ [ -1 ] ] + 1 == n, c = a + b, k = 1; While[ g[ [ k ] ] == k, k++ ]; c = k ]; a = b; b = c; h = Append[ h, c ]; If[ c > g[ [ -1 ] ], f = Append[ f, c ] ], { n, 3, 10^4 } ]; f LinearRecurrence[{3, -2}, {1, 2, 3, 5, 9, 15}, 40] (* Harvey P. Dale, Dec 12 2018 *) CROSSREFS Cf. A060000. Sequence in context: A065956 A328078 A178738 * A092424 A167510 A191701 Adjacent sequences:  A060010 A060011 A060012 * A060014 A060015 A060016 KEYWORD nonn,easy AUTHOR Robert G. Wilson v, Mar 15 2001 EXTENSIONS Formulae and more terms from Henry Bottomley and Larry Reeves (larryr(AT)acm.org), Mar 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 03:47 EDT 2020. Contains 336368 sequences. (Running on oeis4.)