login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060014 Sum of orders of all permutations of n letters. 12
1, 1, 3, 13, 67, 471, 3271, 31333, 299223, 3291487, 39020911, 543960561, 7466726983, 118551513523, 1917378505407, 32405299019941, 608246253790591, 12219834139189263, 253767339725277823, 5591088918313739017, 126036990829657056711, 2956563745611392385211 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.2, p. 460.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..170

FindStat - Combinatorial Statistic Finder, The order of a permutation

Joshua Harrington, Lenny Jones, and Alicia Lamarche, Characterizing Finite Groups Using the Sum of the Orders of the Elements, International Journal of Combinatorics, Volume 2014, Article ID 835125, 8 pages

FORMULA

E.g.f.: Sum_{n>0} (n*Sum_{i|n} (moebius(n/i)*Product_{j|i} exp(x^j/j))). - Vladeta Jovovic, Dec 29 2004; The sum over n should run to at least A000793(k) for producing the k-th entry. - Wouter Meeussen, Jun 16 2012

a(n) = sum_{k>=1} k* A057731(n,k). - R. J. Mathar, Aug 31 2017

EXAMPLE

For n = 4 there is 1 permutation of order 1, 9 permutations of order 2, 8 of order 3 and 6 of order 4, for a total of 67.

MAPLE

b:= proc(n, g) option remember; `if`(n=0, g, add((j-1)!

      *b(n-j, ilcm(g, j))*binomial(n-1, j-1), j=1..n))

    end:

a:= n-> b(n, 1):

seq(a(n), n=0..30);  # Alois P. Heinz, Jul 11 2017

MATHEMATICA

CoefficientList[Series[Sum[n Fold[#1+MoebiusMu[n/#2] Apply[Times, Exp[x^#/#]&/@Divisors[#2] ]&, 0, Divisors[n]], {n, Max[Apply[LCM, Partitions[19], 1]]}], {x, 0, 19}], x] Range[0, 19]! (* Wouter Meeussen, Jun 16 2012 *)

a[ n_] := If[ n < 1, Boole[n == 0], 1 + Total @ Apply[LCM, Map[Length, First /@ PermutationCycles /@ Drop[Permutations @ Range @ n, 1], {2}], 1]]; (* Michael Somos, Aug 19 2018 *)

PROG

(PARI) \\ Naive method -- sum over cycles directly

cycleDecomposition(v:vec)={

    my(cyc=List(), flag=#v+1, n);

    while((n=vecmin(v))<#v,

        my(cur=List(), i, tmp);

        while(v[i++]!=n, );

        while(v[i] != flag,

            listput(cur, tmp=v[i]);

            v[i]=flag;

            i=tmp

        );

        if(#cur>1, listput(cyc, Vec(cur)))    \\ Omit length-1 cycles

    );

    Vec(cyc)

};

permutationOrder(v:vec)={

    lcm(apply(length, cycleDecomposition(v)))

};

a(n)=sum(i=0, n!-1, permutationOrder(numtoperm(n, i)))

\\ Charles R Greathouse IV, Nov 06 2014

(PARI)

A060014(n) =

{

  my(factn = n!, part, nb, i, j, res = 0);

  forpart(part = n,

    nb = 1; j = 1;

    for(i = 1, #part,

      if (i == #part || part[i + 1] != part[i],

        nb *= (i + 1 - j)! * part[i]^(i + 1 - j);

        j = i + 1));

    res += (factn / nb) * lcm(Vec(part)));

  res;

} \\ Jerome Raulin, Jul 11 2017 (much faster, O(A000041(n)) vs O(n!))

CROSSREFS

Cf. A000793, A028418, A060015, A057731, A074859, A290932.

Sequence in context: A080832 A194019 A020017 * A182666 A042659 A054132

Adjacent sequences:  A060011 A060012 A060013 * A060015 A060016 A060017

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, Mar 17 2001

EXTENSIONS

More terms from Vladeta Jovovic, Mar 18 2001

More terms from Alois P. Heinz, Feb 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 19:30 EDT 2019. Contains 321330 sequences. (Running on oeis4.)