login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059929 a(n) = Fibonacci(n)*Fibonacci(n+2). 20
0, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 20737, 54288, 142130, 372099, 974170, 2550408, 6677057, 17480760, 45765226, 119814915, 313679522, 821223648, 2149991425, 5628750624, 14736260450, 38580030723, 101003831722, 264431464440, 692290561601 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Expansion of golden ratio (1+sqrt(5))/2 as an infinite product: phi = Product_{i>=0} (1+1/(Fibonacci(2i+1) * Fibonacci(2i+3)-1)) * (1-1/(Fibonacci(2i+2) * Fibonacci(2i+4)+1)). - Thomas Baruchel, Nov 11 2003

Each of these is one short of or one over the square of a Fibonacci number (A007598). This means that a rectangle sized F(n) by F(n + 2) units can't be converted into a square with sides of length F(n + 1) units unless one square unit of material is added or removed. - Alonso del Arte, May 03 2011

These are the integer parts of the numerators of the numbers with continued fraction representations [1, 2, 2, 2, ...], [1, 1, 2, 2, 2, ...], [1, 1, 1, 2, 2, 2, ...], etc., that is, sqrt(2), (2+sqrt(2))/2, 3-sqrt(2), (10+sqrt(2))/7, (24-sqrt(2))/14, etc. - Geoffrey Caveney, May 03 2014

a(n) appears also as the third component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), a(n), A121801(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..500

Tim Jones (producer), Engineering Bits & Bytes: The Fibonacci Puzzle, Wayne State University College of Engineering (2011)

E. H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, arXiv:math/0304090 [math.CO], 2003.

M. Renault, Dissertation

M. Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003.

Index entries for linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = Fibonacci(n+1)^2 - (-1)^n = A007598(n+1) + A033999(n+1) = A000045(n+1)^2 - A033999(n).

G.f.: (2*x-x^2) / ((1+x)*(1-3*x+x^2)).

Sum_{n>=1} 1/a(n) = 1.

Sum_{n>=1} (-1)^n/a(n) = 2 - sqrt(5).

Sum_{n>=1} 1/a(2n-1) = 1/phi = (sqrt(5) - 1)/2. - Franz Vrabec, Sep 15 2005

1 = 1/2 + 1/3 + 1/10 + 1/24 + 1/65 + 1/168 + ... = 1/(1*2) + 1/(1*3) + 1/(2*5) + 1/(3*8) + ... - Gary W. Adamson, Mar 16 2008

Sum_{n>=1} 1/a(2n) = (3 - sqrt(5))/2. - Franz Vrabec, Nov 30 2009

a(n) = ((7+3*sqrt(5))/10)*((3+sqrt(5))/2)^(n-1) + ((7-3*sqrt(5))/10)*((3-sqrt(5))/2)^(n-1) + (3/5)*(-1)^(n-1). - Tim Monahan, Aug 09 2011

a(n) = (Lucas(n+1)^2 - Fibonacci(n+1)^2)/4. - Vincenzo Librandi, Aug 02 2014

a(n) = F(n-2)*F(n) + F(n-1)*F(n) + F(n-2)*F(n+1) + F(n-1)*F(n+1), where F=A000045, F(-2)=-1, F(-1)=1. - Bruno Berselli, Nov 03 2015

a(n) = A035513(1,n-1)*A035513(3,n-1)/2 = A035513(1,n-1)*A035513(4,n-1)/3. - R. J. Mathar, Sep 04 2016

MAPLE

with(combinat): a:=n->fibonacci(n)*fibonacci(n+2): seq(a(n), n=0..26); # Zerinvary Lajos, Oct 07 2007

MATHEMATICA

Table[Fibonacci[n]*Fibonacci[n+2], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)

PROG

(PARI) for (n=0, 500, write("b059929.txt", n, " ", fibonacci(n)*fibonacci(n + 2))) \\ Harry J. Smith, Jun 30 2009

(MAGMA) [Fibonacci(n)*Fibonacci(n+2): n in [0..30]]; // Vincenzo Librandi, Jul 02 2014

CROSSREFS

Bisection of A070550.

First differences of A059840.

Sequence in context: A130002 A162034 A105286 * A123029 A103018 A246437

Adjacent sequences:  A059926 A059927 A059928 * A059930 A059931 A059932

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, Feb 09 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 13:09 EST 2017. Contains 295127 sequences.