This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059929 a(n) = Fibonacci(n)*Fibonacci(n+2). 20
 0, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 20737, 54288, 142130, 372099, 974170, 2550408, 6677057, 17480760, 45765226, 119814915, 313679522, 821223648, 2149991425, 5628750624, 14736260450, 38580030723, 101003831722, 264431464440, 692290561601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Expansion of golden ratio (1+sqrt(5))/2 as an infinite product: phi = Product_{i>=0} (1+1/(Fibonacci(2*i+1) * Fibonacci(2*i+3)-1)) * (1-1/(Fibonacci(2*i+2) * Fibonacci(2i+4)+1)). - Thomas Baruchel, Nov 11 2003 Each of these is one short of or one over the square of a Fibonacci number (A007598). This means that a rectangle sized F(n) by F(n + 2) units can't be converted into a square with sides of length F(n + 1) units unless one square unit of material is added or removed. - Alonso del Arte, May 03 2011 These are the integer parts of the numerators of the numbers with continued fraction representations [1, 2, 2, 2, ...], [1, 1, 2, 2, 2, ...], [1, 1, 1, 2, 2, 2, ...], etc., that is, sqrt(2), (2+sqrt(2))/2, 3-sqrt(2), (10+sqrt(2))/7, (24-sqrt(2))/14, etc. - Geoffrey Caveney, May 03 2014 a(n) appears also as the third component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), a(n), A121801(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014 Numbers with a continued fraction expansion with the repeating sequence of length n [1, 1, ..., 1, 2], n-1 ones followed by a single two, for n > = 1, appear to be equal to (F(n) + sqrt(a(n)))/F(n+1), where F(n) = A000045(n). - R. James Evans, Nov 21 2018 The preceding conjecture is true. Proof: For n >= 1 let c(n) := confrac(repeat(1^{n-1}, 2)) where 1^{k} denotes 1 taken k times. This can be computed, e.g. from [Perron, third and fourth eq. on p. 62], as c(n) = (F(n) + sqrt(F(n+1)^2 - (-1)^n)) / F(n+1), which is the conjectured formula because F(n+1)^2 - (-1)^n = a(n). - Wolfdieter Lang, Jan 05 2019 REFERENCES O. Perron, Die Lehre von den Kettenbrüchen, Band I, 3. Auflage, B. G. Teubner, Stuttgart, 1954, pp. 61-61. LINKS Muniru A Asiru, Table of n, a(n) for n = 0..2374 (first 501 terms from Harry J. Smith) Tim Jones (producer), Engineering Bits & Bytes: The Fibonacci Puzzle, Wayne State University College of Engineering (2011). E. H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, arXiv:math/0304090 [math.CO], 2003. M. Renault, Properties of the Fibonacci Sequence Under Various Moduli, Master's Thesis, Wake Forest University, 1996. M. Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004. Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = Fibonacci(n+1)^2 - (-1)^n = A007598(n+1) + A033999(n+1) = A000045(n+1)^2 - A033999(n). G.f.: (2*x-x^2) / ((1+x)*(1-3*x+x^2)). Sum_{n>=1} 1/a(n) = 1. Sum_{n>=1} (-1)^n/a(n) = 2 - sqrt(5). Sum_{n>=1} 1/a(2n-1) = 1/phi = (sqrt(5) - 1)/2. - Franz Vrabec, Sep 15 2005 1 = 1/2 + 1/3 + 1/10 + 1/24 + 1/65 + 1/168 + ... = 1/(1*2) + 1/(1*3) + 1/(2*5) + 1/(3*8) + ... - Gary W. Adamson, Mar 16 2008 Sum_{n>=1} 1/a(2n) = (3 - sqrt(5))/2. - Franz Vrabec, Nov 30 2009 a(n) = ((7+3*sqrt(5))/10)*((3+sqrt(5))/2)^(n-1) + ((7-3*sqrt(5))/10)*((3-sqrt(5))/2)^(n-1) + (3/5)*(-1)^(n-1). - Tim Monahan, Aug 09 2011 a(n) = (Lucas(n+1)^2 - Fibonacci(n+1)^2)/4. - Vincenzo Librandi, Aug 02 2014 a(n) = F(n-2)*F(n) + F(n-1)*F(n) + F(n-2)*F(n+1) + F(n-1)*F(n+1), where F=A000045, F(-2)=-1, F(-1)=1. - Bruno Berselli, Nov 03 2015 a(n) = A035513(1,n-1)*A035513(3,n-1)/2 = A035513(1,n-1)*A035513(4,n-1)/3. - R. J. Mathar, Sep 04 2016 MAPLE with(combinat): a:=n->fibonacci(n)*fibonacci(n+2): seq(a(n), n=0..26); # Zerinvary Lajos, Oct 07 2007 MATHEMATICA Table[Fibonacci[n]*Fibonacci[n+2], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *) PROG (PARI) for (n=0, 500, write("b059929.txt", n, " ", fibonacci(n)*fibonacci(n + 2))) \\ Harry J. Smith, Jun 30 2009 (MAGMA) [Fibonacci(n)*Fibonacci(n+2): n in [0..30]]; // Vincenzo Librandi, Jul 02 2014 (Sage) [fibonacci(n)*fibonacci(n+2) for n in range(30)] # G. C. Greubel, Nov 21 2018 (GAP) a:=List([0..30], n->Fibonacci(n)*Fibonacci(n+2));; Print(a); # Muniru A Asiru, Jan 05 2019 (Python) from sympy import fibonacci for n in range(0, 30): print(fibonacci(n)*fibonacci(n+2), end=', ') # Stefano Spezia, Jan 05 2019 CROSSREFS Bisection of A070550. First differences of A059840. Sequence in context: A162034 A105286 A295616 * A123029 A103018 A246437 Adjacent sequences:  A059926 A059927 A059928 * A059930 A059931 A059932 KEYWORD nonn,easy AUTHOR Henry Bottomley, Feb 09 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)