OFFSET
0,2
COMMENTS
Alternatively, define a morphism f: 1 -> 2, 2 -> 3, 3 -> 1,2,3; let S(0)=1, S(k) = f(S(k-1)) for k>0; then sequence is the concatenation S(0) S(1) S(2) S(3) ...
REFERENCES
C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 273.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..30121 (Roes 0 through 17, flattened.)
C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
FORMULA
a(n) = A059825(n) + 1. - Sean A. Irvine, Oct 11 2022
EXAMPLE
Rows 0, 1, 2, ..., 8, ... of the triangle are:
0, [1]
1, [2]
2, [3]
3, [1, 2, 3]
4, [2, 3, 1, 2, 3]
5, [3, 1, 2, 3, 2, 3, 1, 2, 3]
6, [1, 2, 3, 2, 3, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 2, 3]
7, [2, 3, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 2, 3]
8, [3, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 3, 1, 2, 3, 2, 3, 1, 2, 3]
...
MAPLE
# To get successive rows of A059832
S:=Array(0..100);
S[0]:=[1];
S[1]:=[2];
S[2]:=[3];
for n from 3 to 12 do
S[n]:=[op(S[n-3]), op(S[n-2]), op(S[n-1])];
lprint(S[n]);
od: # N. J. A. Sloane, Jul 04 2018
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Jason Earls, Feb 25 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 26 2001
Entry revised by N. J. A. Sloane, Jun 21 2018
STATUS
approved