

A194899


Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=sqrt(12).


4



1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

See A194832 for a general discussion.


LINKS

Table of n, a(n) for n=1..91.


EXAMPLE

First nine rows:
1
1 2
3 1 2
3 1 4 2
5 3 1 4 2
5 3 1 6 4 2
7 5 3 1 6 4 2
7 5 3 1 8 6 4 2
9 7 5 3 1 8 6 4 2


MATHEMATICA

r = Sqrt[12];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 20}]] (* A194899 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n  k + 1], {n, 1, 15},
{k, 1, n}]] (* A194900 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 90}]] (* A194901 *)


PROG

(PARI) row(n) = Vec(vecsort(vector(n, k, frac(k*sqrt(12))), , 1));
tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Feb 06 2019


CROSSREFS

Cf. A194832, A194900, A194901.
Sequence in context: A195107 A054073 A194871 * A228094 A059832 A105316
Adjacent sequences: A194896 A194897 A194898 * A194900 A194901 A194902


KEYWORD

nonn,tabl


AUTHOR

Clark Kimberling, Sep 05 2011


STATUS

approved



