login
A105933
An eight-symbol substitution on an hypertetrahedron with two symbol connection per vertex : limited to coverage of the connections : characteristic polynomial:x^8-4*x^&5-4*x^4-8*x^3.
1
1, 1, 2, 3, 1, 2, 3, 2, 3, 3, 4, 1, 2, 4, 7, 1, 2, 3, 2, 3, 3, 4, 1, 2, 4, 7, 2, 3, 3, 4, 1, 2, 4, 7, 3, 4, 1, 2, 4, 7, 1, 2, 4, 7, 1, 8, 2, 3, 3, 4, 1, 8, 5, 8, 1, 2, 3, 2, 3, 3, 4, 1, 2, 4, 7, 2, 3, 3, 4, 1, 2, 4, 7, 3, 4, 1, 2, 4, 7, 1, 2, 4, 7, 1, 8, 2, 3, 3, 4, 1, 8, 5, 8, 2, 3, 3, 4, 1, 2, 4, 7, 3, 4, 1, 2
OFFSET
0,3
COMMENTS
This flow can be visualized in 3d by using a cube's vertices as the substitution for the eight points.
FORMULA
1->{2, 3}, 2->{3, 4}, 3->{4, 7}, 4->{1, 8}, 5->{1, 6}, 6->{2, 7}, 7->{5, 8}, 8->{5, 6}
MATHEMATICA
s[1] = {2, 3}; s[2] = {3, 4}; s[3] = {1, 2, 4, 7}; s[4] = {1, 8}; s[5] = { 1, 6}; s[6] = {2, 7}; s[7] = {5, 8}; s[8] = {5, 6}; t[a_] := Join[a, Flatten[s/@a]]; p[0]={1}; p[1]=t[{1}]; p[n_]:=t[p[n-1]] a=Flatten[Table[p[n], {n, 0, 3}]]
CROSSREFS
Sequence in context: A228094 A059832 A105316 * A105315 A328912 A356327
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Apr 26 2005
STATUS
approved