

A059834


Sum of squares of entries of Wilkinson's eigenvalue test matrix of order 2n+1.


1



0, 6, 18, 40, 76, 130, 206, 308, 440, 606, 810, 1056, 1348, 1690, 2086, 2540, 3056, 3638, 4290, 5016, 5820, 6706, 7678, 8740, 9896, 11150, 12506, 13968, 15540, 17226, 19030, 20956, 23008, 25190, 27506, 29960, 32556, 35298, 38190, 41236, 44440
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The m X m Wilkinson matrix is a symmetric tridiagonal matrix. If m = 2k + 1, its main diagonal is k, k  1, ..., 1, 0, 1, ... k  1, k. If m = 2k, its main diagonal is k  1/2, k  3/2, ..., 3/2, 1/2, 1/2, 3/2, ..., k  3/2, k  1/2. In both cases, it has all 1's on the diagonals next to the main diagonal and 0's elsewhere.  David Wasserman, May 24 2002


LINKS

Table of n, a(n) for n=0..40.


FORMULA

a(n) = (2n^3 + 3n^2 + 13n)/3. For the matrix of order 2n, the formula is (4n^3 + 23n  12)/6 (which is not integervalued).  David Wasserman, May 24 2002
a(n) = sum(2*(k+1)^2+4, k=0..(n1)).  Mike Warburton, Sep 08 2007
G.f.: 2*x*(33*x+2*x^2)/(1x)^4.  Colin Barker, Apr 04 2012


EXAMPLE

The matrix of order 5:
2 1 0 0 0
1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
0 0 0 1 2


PROG

(MATLAB) for i = 0:20 a(i+1) = trace( wilkinson(2*i+1)*wilkinson(2*i+1)' ); end; a


CROSSREFS

Cf. A059831.
Sequence in context: A299256 A002411 A023658 * A299263 A015224 A163983
Adjacent sequences: A059831 A059832 A059833 * A059835 A059836 A059837


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Feb 25 2001


EXTENSIONS

More terms from David Wasserman, May 24 2002


STATUS

approved



