login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056979
Number of blocks of {1, 0, 1} in binary expansion of n.
11
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,21
COMMENTS
a(n) = A213629(n,5) for n > 4. - Reinhard Zumkeller, Jun 17 2012
LINKS
J.-P. Allouche, J. Shallit, The Ring of k-regular Sequences II
Eric Weisstein's World of Mathematics, Digit Block
FORMULA
a(2n) = a(n), a(2n+1) = a(n) + [n congruent to 2 mod 4]. - Ralf Stephan, Aug 22 2003
MATHEMATICA
a[1] = a[2] = 0; a[n_] := a[n] = If[EvenQ[n], a[n/2], a[(n - 1)/2] + Boole[Mod[(n - 1)/2, 4] == 2]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Oct 22 2012, after Ralf Stephan *)
PROG
(Haskell)
import Data.List (tails, isPrefixOf)
a056979 = sum . map (fromEnum . ([1, 0, 1] `isPrefixOf`)) .
tails . a030308_row
-- Reinhard Zumkeller, Jun 17 2012
(PARI) a(n) = hammingweight(bitnegimply(bitand(n, n>>2), n>>1));
vector(102, i, a(i)) \\ Gheorghe Coserea, Sep 17 2015
KEYWORD
nonn,easy
STATUS
approved