OFFSET
1,11
COMMENTS
We say d is a strong divisor of n iff d is a divisor of n and d > 1. Let prime_phi(n) be number of primes in the reduced residue system mod n. Then prime_phi(n) = T(n,1) = T(n,n).
LINKS
Peter Luschny, Euler's totient function
EXAMPLE
T(15, 22) = card({7,13}) = 2 because the coprimes of 15 are {1,2,4,7,8,11,13,14} and the strong divisors of 22 are {2,11,22}.
-
[x][1][2][3][4][5][6][7][8]
[1] 0, 0, 0, 0, 0, 0, 0, 0
[2] 0, 0, 0, 0, 0, 0, 0, 0
[3] 1, 0, 1, 0, 1, 0, 1, 0
[4] 1, 1, 0, 1, 1, 0, 1, 1
[5] 2, 1, 1, 1, 2, 0, 2, 1
[6] 1, 1, 1, 1, 0, 1, 1, 1
[7] 3, 2, 2, 2, 2, 1, 3, 2
[8] 3, 3, 2, 3, 2, 2, 2, 3
-
Triangle k=1..n, n>=1:
[1] 0
[2] 0, 0
[3] 1, 0, 1
[4] 1, 1, 0, 1
[5] 2, 1, 1, 1, 2
[6] 1, 1, 1, 1, 0, 1
[7] 3, 2, 2, 2, 2, 1, 3
[8] 3, 3, 2, 3, 2, 2, 2, 3
-
Triangle n=1..k, k>=1:
[1] 0
[2] 0, 0
[3] 0, 0, 1
[4] 0, 0, 0, 1
[5] 0, 0, 1, 1, 2
[6] 0, 0, 0, 0, 0, 1
[7] 0, 0, 1, 1, 2, 1, 3
[8] 0, 0, 0, 1, 1, 1, 2, 3
MAPLE
strongdivisors := n -> numtheory[divisors](n) minus {1}:
coprimes := n -> select(k->igcd(k, n)=1, {$1..n}):
primes := n -> select(isprime, {$1..n}):
T := (n, k) -> nops(primes(n) intersect (coprimes(n) minus strongdivisors(k))):
seq(seq(T(n-k+1, k), k=1..n), n=1..13); # Square array by antidiagonals.
seq(print(seq(T(n, k), k=1..n)), n=1..8); # Lower triangle.
seq(print(seq(T(n, k), n=1..k)), k=1..8); # Upper triangle.
MATHEMATICA
T[n_, k_] := Complement[Select[Range[n-1], PrimeQ[#] && CoprimeQ[#, n]&], Rest[Divisors[k]]] // Length;
Table[T[n-k+1, k], {n, 1, 13}, {k, 1, n}] (* Jean-François Alcover, Jun 29 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 07 2011
STATUS
approved