login
A056025
Numbers k such that k^12 == 1 (mod 13^2).
11
1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 170, 188, 191, 192, 239, 249, 258, 268, 315, 316, 319, 337, 339, 357, 360, 361, 408, 418, 427, 437, 484, 485, 488, 506, 508, 526, 529, 530, 577, 587, 596, 606, 653, 654, 657, 675, 677, 695, 698, 699, 746
OFFSET
1,2
COMMENTS
From 19 to 168 inclusive, these are the numbers that 'fool' the strong pseudoprimality test described in Wilf (1986) in regard to determining whether 169 is composite. - Alonso del Arte, Feb 05 2012
REFERENCES
Herbert S. Wilf, Algorithms and Complexity, Englewood Cliffs, New Jersey: Prentice-Hall, 1986, pp. 158-160.
LINKS
MATHEMATICA
Select[ Range[ 800 ], PowerMod[ #, 12, 169 ]==1& ]
PROG
(PARI) is(k)=Mod(k, 169)^12==1 \\ Charles R Greathouse IV, Feb 07 2018
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jun 08 2000
EXTENSIONS
Definition corrected by T. D. Noe, Aug 23 2008
STATUS
approved