login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056023 Unique triangle such that (1) every positive integer occurs exactly once; (2) row n consists of n consecutive numbers; (3) odd-numbered rows are decreasing; (4) even-numbered rows are increasing; and (5) column 1 is increasing. 8
1, 2, 3, 6, 5, 4, 7, 8, 9, 10, 15, 14, 13, 12, 11, 16, 17, 18, 19, 20, 21, 28, 27, 26, 25, 24, 23, 22, 29, 30, 31, 32, 33, 34, 35, 36, 45, 44, 43, 42, 41, 40, 39, 38, 37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Self-inverse permutation of the natural numbers.

T(2*n-1,1) = A000217(2*n-1) = T(2*n,1) - 1; T(2*n,4*n) = A000217(2*n) = T(2*n+1,4*n+1) - 1. - Reinhard Zumkeller, Apr 25 2004

Mirror image of triangle in A056011 . [From Philippe Deléham, Apr 04 2009]

From Clark Kimberling, Feb 03 2011: (Start)

When formatted as a rectangle R, for m>1, the numbers n-1 and n+1 are neighbors (row, column, or diagonal) of R.

R(n,k)=n+(k+n-2)(k+n-1)/2 if n+k is odd;

R(n,k)=k+(n+k-2)(n+k-1)/2 if n+k is even.

Northwest corner:

1....2....6....7....15...16...28

3....5....8....14...17...27...30

4....9....13...18...26...31...43

10...12...19...25...32...42...49

11...20...24...33...41...50...62

(End)

a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - Boris Putievskiy, Dec 24 2012

For generalizations see A218890, A213927. - Boris Putievskiy, Mar 10 2013

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..5050

Index entries for sequences that are permutations of the natural numbers

Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.

Eric Weisstein's MathWorld, Pairing functions

FORMULA

T(n, k) = (n^2 - (n - 2*k)*(-1)^(n mod 2)) / 2 + n mod 2. - Reinhard Zumkeller, Apr 25 2004

a(n) = ((i+j-1)*(i+j-2)+((-1)^t+1)*j - ((-1)^t-1)*i)/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Dec 24 2012

EXAMPLE

Triangle begins : 1 ; 2,3 ; 6,5,4 ; 7,8,9,10 ; 15,14,13,12,11 ; ... [Philippe Deléham, Apr 04 2009]

Enumeration by boustrophedonic ("ox-plowing") diagonal method. - Boris Putievskiy, Dec 24 2012

MATHEMATICA

(* As a rectangle: *)

r[n_, k_]:=n+(k+n-2)(k+n-1)/2/; OddQ[n+k];

r[n_, k_]:=k+(n+k-2)(n+k-1)/2/; EvenQ[n+k];

TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]

Table[r[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten

(* Clark Kimberling, Feb 03 2011 *)

CROSSREFS

Cf. A056011, A218890, A213927.

Sequence in context: A130686 A213927 A222241 * A133259 A120067 A089843

Adjacent sequences:  A056020 A056021 A056022 * A056024 A056025 A056026

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling, Aug 01 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 06:34 EST 2019. Contains 319269 sequences. (Running on oeis4.)