

A056023


Unique triangle such that (1) every positive integer occurs exactly once; (2) row n consists of n consecutive numbers; (3) oddnumbered rows are decreasing; (4) evennumbered rows are increasing; and (5) column 1 is increasing.


8



1, 2, 3, 6, 5, 4, 7, 8, 9, 10, 15, 14, 13, 12, 11, 16, 17, 18, 19, 20, 21, 28, 27, 26, 25, 24, 23, 22, 29, 30, 31, 32, 33, 34, 35, 36, 45, 44, 43, 42, 41, 40, 39, 38, 37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Selfinverse permutation of the natural numbers.
T(2*n1,1) = A000217(2*n1) = T(2*n,1)  1; T(2*n,4*n) = A000217(2*n) = T(2*n+1,4*n+1)  1.  Reinhard Zumkeller, Apr 25 2004
Mirror image of triangle in A056011 . [From Philippe Deléham, Apr 04 2009]
From Clark Kimberling, Feb 03 2011: (Start)
When formatted as a rectangle R, for m>1, the numbers n1 and n+1 are neighbors (row, column, or diagonal) of R.
R(n,k)=n+(k+n2)(k+n1)/2 if n+k is odd;
R(n,k)=k+(n+k2)(n+k1)/2 if n+k is even.
Northwest corner:
1....2....6....7....15...16...28
3....5....8....14...17...27...30
4....9....13...18...26...31...43
10...12...19...25...32...42...49
11...20...24...33...41...50...62
(End)
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.  Boris Putievskiy, Dec 24 2012
For generalizations see A218890, A213927.  Boris Putievskiy, Mar 10 2013


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..5050
Index entries for sequences that are permutations of the natural numbers
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's MathWorld, Pairing functions


FORMULA

T(n, k) = (n^2  (n  2*k)*(1)^(n mod 2)) / 2 + n mod 2.  Reinhard Zumkeller, Apr 25 2004
a(n) = ((i+j1)*(i+j2)+((1)^t+1)*j  ((1)^t1)*i)/2, where i=nt*(t+1)/2, j=(t*t+3*t+4)/2n, t=floor[(1+sqrt(8*n7))/2].  Boris Putievskiy, Dec 24 2012


EXAMPLE

Triangle begins : 1 ; 2,3 ; 6,5,4 ; 7,8,9,10 ; 15,14,13,12,11 ; ... [Philippe Deléham, Apr 04 2009]
Enumeration by boustrophedonic ("oxplowing") diagonal method.  Boris Putievskiy, Dec 24 2012


MATHEMATICA

(* As a rectangle: *)
r[n_, k_]:=n+(k+n2)(k+n1)/2/; OddQ[n+k];
r[n_, k_]:=k+(n+k2)(n+k1)/2/; EvenQ[n+k];
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
Table[r[nk+1, k], {n, 14}, {k, n, 1, 1}]//Flatten
(* Clark Kimberling, Feb 03 2011 *)


CROSSREFS

Cf. A056011, A218890, A213927.
Sequence in context: A130686 A213927 A222241 * A133259 A120067 A089843
Adjacent sequences: A056020 A056021 A056022 * A056024 A056025 A056026


KEYWORD

nonn,tabl,easy


AUTHOR

Clark Kimberling, Aug 01 2000


STATUS

approved



