This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056021 Numbers k such that k^4 == 1 (mod 5^2). 3
 1, 7, 18, 24, 26, 32, 43, 49, 51, 57, 68, 74, 76, 82, 93, 99, 101, 107, 118, 124, 126, 132, 143, 149, 151, 157, 168, 174, 176, 182, 193, 199, 201, 207, 218, 224, 226, 232, 243, 249, 251, 257, 268, 274, 276, 282, 293, 299, 301, 307, 318, 324, 326, 332, 343, 349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers congruent to {1, 7, 18, 24} mod 25. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x*(x^2+3*x+1)^2 / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011 a(n) = (-25 - (-1)^n + (9-9*I)*(-I)^n + (9+9*I)*I^n + 50*n) / 8. - Colin Barker, Oct 16 2015 MATHEMATICA Select[ Range[ 400 ], PowerMod[ #, 4, 25 ]==1& ] PROG (PARI) a(n) = (-25 - (-1)^n + (9-9*I)*(-I)^n + (9+9*I)*I^n + 50*n) / 8 \\ Colin Barker, Oct 16 2015 (PARI) Vec(x*(x^2+3*x+1)^2/((1+x)*(x^2+1)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015 (PARI) for(n=0, 1e3, if(n^4 % 5^2 == 1, print1(n", "))) \\ Altug Alkan, Oct 16 2015 CROSSREFS Sequence in context: A272972 A070609 A007236 * A090098 A101865 A138391 Adjacent sequences:  A056018 A056019 A056020 * A056022 A056023 A056024 KEYWORD nonn,easy AUTHOR Robert G. Wilson v, Jun 08 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)