login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055615 a(n) = n * mu(n), where mu is the Möbius function A008683. 78
1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Dirichlet inverse of n.

Absolute values give n if n is squarefree, otherwise 0.

a(n) is multiplicative because both mu(n) and n are. - Mitch Harris, Jun 09 2005

a(n) is multiplicative with a(p^1) = -p, a(p^e) = 0 if e > 1. - David W. Wilson, Jun 12 2005

Negative of the Moebius number of the dihedral group of order 2n. - Eric M. Schmidt, Jul 28 2013

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)

Mats Granvik, Primes approximated by eigenvalues

Mats Granvik, Mobius function times n approximated by eigenvalues

FORMULA

a(n) = n * A008683(n).

Dirichlet g.f.: 1/zeta(s-1).

Multiplicative with a(p^e) = -p*0^(e-1), e>0 and p prime. - Reinhard Zumkeller, Jul 17 2003

Conjectures: lim b->1+ Sum n=1..inf a(n)*b^(-n) = -12 and lim b->1- Sum n=1..inf a(n)*b^n = -12 (+ indicates that b decreases to 1, - indicates it increases to 1), both considering that zeta(-1) = -1/12 and calculations (more generally mu(n)*n^s is Abel summable to zeta(-s)). - Gerald McGarvey, Sep 26 2004

Dirichlet generating function for the absolute value: zeta(s-1)/zeta(2s-2). - Franklin T. Adams-Watters, Sep 11 2005

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k*A(x^k). - Ilya Gutkovskiy, May 11 2019

EXAMPLE

G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...

MAPLE

with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014

MATHEMATICA

Table[n MoebiusMu[n], {n, 80}] (* Harvey P. Dale, May 26 2011 *)

PROG

(PARI) {a(n) = if( n<1, 0, n * moebius(n))};

(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n]))};

(Magma) [n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014

(Haskell)

a055615 n = a008683 n * n  -- Reinhard Zumkeller, Sep 04 2015

(SageMath) [n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022

CROSSREFS

Moebius transform of A023900.

Cf. A000027 (Dirichlet inverse), A061669 (sum with it).

Cf. A008683, A062004.

Cf. A013929 (positions of 0's), A068340 (partial sums), A261869 (first differences), A261890 (second differences).

Sequence in context: A248092 A145105 A140700 * A243059 A332845 A351079

Adjacent sequences:  A055612 A055613 A055614 * A055616 A055617 A055618

KEYWORD

sign,easy,nice,mult

AUTHOR

Michael Somos, Jun 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 23:36 EDT 2022. Contains 357270 sequences. (Running on oeis4.)