login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023900 Dirichlet inverse of Euler totient function (A000010). 82
1, -1, -2, -1, -4, 2, -6, -1, -2, 4, -10, 2, -12, 6, 8, -1, -16, 2, -18, 4, 12, 10, -22, 2, -4, 12, -2, 6, -28, -8, -30, -1, 20, 16, 24, 2, -36, 18, 24, 4, -40, -12, -42, 10, 8, 22, -46, 2, -6, 4, 32, 12, -52, 2, 40, 6, 36, 28, -58, -8, -60, 30, 12, -1, 48, -20, -66, 16, 44, -24, -70, 2, -72, 36, 8, 18, 60, -24, -78, 4, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also called reciprocity balance of n.

Apart from different signs, same as sum( d divides n,core(d)*mu(n/d)), where core(d) (A007913) is the squarefree part of d. - Benoit Cloitre, Apr 06 2002

Row sums of triangle A143256. - Gary W. Adamson, Aug 02 2008

Main diagonal of A191898. - Mats Granvik, Jun 19 2011

REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.

D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 125.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)

G. P. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (516) (2005) 403-408.

K. Dohmen, M. Trinks, An Abstraction of Whitney's Broken Circuit Theorem, arXiv preprint arXiv:1404.5480 [math.CO], 2014.

R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234.

FORMULA

a(n) = Sum_{ d divides n } d*mu(d) = Product_{p|n} (1-p).

a(n) = 1 / (Sum_{ d divides n } mu(d)*d/phi(d)).

Dirichlet g.f.: zeta(s)/zeta(s-1). - Michael Somos, Jun 04 2000

a(n+1) = det(n+1)/det(n) where det(n) is the determinant of the n X n matrix M_(i, j) = i/gcd(i, j) = lcm(i, j)/j. - Benoit Cloitre, Aug 19 2003

a(n) = phi(n)*moebius(A007947(n))*A007947(n)/n. Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = log(F(x)) where F(x) is the g.f. of A117209 and satisfies: 1/(1-x) = Product_{n >= 1} F(x^n). - Paul D. Hanna, Mar 03 2006

G.f.: A(x) = Sum_{k >= 1} mu(k) k x^k/(1 - x^k) where mu(k) is the Moebius (Mobius) function, A008683. - Stuart Clary, Apr 15 2006

G.f.: A(x) is x times the logarithmic derivative of A117209(x). - Stuart Clary, Apr 15 2006

Row sums of triangle A134842. - Gary W. Adamson, Nov 12 2007

G.f.: x/(1-x) = Sum_{n >= 1} a(n)*x^n/(1-x^n)^2. - Paul D. Hanna, Aug 16 2008

a(n) = phi(rad(n)) *(-1)^omega(n) = A000010(A007947(n)) *(-1)^A001221(n). - Enrique Pérez Herrero, Aug 24 2010

a(n) = Product_{i = 2..n} (1-i)^( (pi(i)-pi(i-1)) * floor( (cos(n*Pi/i))^2 ) ), where pi = A000720, Pi = A000796. - Wesley Ivan Hurt, May 24 2013

a(n) = -limit of zeta(s)*(Sum_{d divides n} moebius(d)/exp(d)^(s-1)) as s->1 for n>1. - Mats Granvik, Jul 31 2013

a(n) = Sum_{d divides n} mu(d)* rad(d), where rad is A007947. - Enrique Pérez Herrero, May 29 2014.

Conjecture for n>1: Let n = 2^(A007814(n))*m = 2^(ruler(n))*odd_part(n), where m = A000265(n), then a(n) = (-1)^(m=n)*(0+Sum_{i=1..m and gcd(i,m)=1} (4*min(i,m-i)-m)) = (-1)^(m<n)*(1+Sum_{i=1..m and gcd(i,m)>1} (4*min(i,m-i)-m)). - I. V. Serov, May 02 2017

a(n) = (-1)^A001221(n) * A173557(n). - R. J. Mathar, Nov 02 2017

a(1) = 1; for n > 1, a(n) = (1-A020639(n)) * a(A028234(n)), because multiplicative with a(p^e) = (1-p). - Antti Karttunen, Nov 28 2017

EXAMPLE

x - x^2 - 2*x^3 - x^4 - 4*x^5 + 2*x^6 - 6*x^7 - x^8 - 2*x^9 + 4*x^10 - ...

MAPLE

A023900 := n -> mul(1-i, i=numtheory[factorset](n)); # Peter Luschny, Oct 26 2010

MATHEMATICA

a[ n_] := If[ n < 1, 0, Sum[ d MoebiusMu @ d, { d, Divisors[n]}]] (* Michael Somos, Jul 18 2011 *)

Array[ Function[ n, 1/Plus @@ Map[ #*MoebiusMu[ # ]/EulerPhi[ # ]&, Divisors[ n ] ] ], 90 ]

nmax = 81; Drop[ CoefficientList[ Series[ Sum[ MoebiusMu[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006 *)

t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] :=  t[n, k] = If[n < k, If[n > 1 && k > 1, Sum[-t[k - i, n], {i, 1, n - 1}], 0], If[n > 1 && k > 1, Sum[-t[n - i, k], {i, 1, k - 1}], 0]]; Table[t[n, n], {n, 36}] (* Mats Granvik, Robert G. Wilson v, Jun 25 2011 *)

Table[DivisorSum[m, # MoebiusMu[#] &], {m, 90}] (* Jan Mangaldan, Mar 15 2013 *)

PROG

(PARI) {a(n) = direuler( p=2, n, (1 - p*X) / (1 - X))[n]}

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d * moebius(d)))} /* Michael Somos, Jul 18 2011 */

(PARI) a(n)=sumdivmult(n, d, d*moebius(d)) \\ Charles R Greathouse IV, Sep 09 2014

(Haskell)

a023900 1 = 1

a023900 n = product $ map (1 -) $ a027748_row n

-- Reinhard Zumkeller, Jun 01 2015

(Python)

from sympy import divisors, mobius

def a(n): return sum([d*mobius(d) for d in divisors(n)]) # Indranil Ghosh, Apr 29 2017

(Scheme, with memoization-macro definec) (definec (A023900 n) (if (= 1 n) 1 (* (- 1 (A020639 n)) (A023900 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017

CROSSREFS

Cf. A000010, A023898, A117209, A134842.

Moebius transform is A055615.

Cf. A027748, A173557 (gives the absolute values), A295876.

Sequence in context: A070777 A173614 A173557 * A141564 A239641 A249151

Adjacent sequences:  A023897 A023898 A023899 * A023901 A023902 A023903

KEYWORD

sign,easy,nice,mult

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 17:05 EDT 2018. Contains 315270 sequences. (Running on oeis4.)