OFFSET
1,1
COMMENTS
a(n) = A055436(n) if 1<=n<10.
Number of edges in the join of the complete 4-partite graph of order 4n and the cycle graph of order n, K_n,n,n,n * C_n. - Roberto E. Martinez II, Jan 07 2002
LINKS
FORMULA
From Bruno Berselli, Nov 26 2013: (Start)
G.f.: x*(11 + 9*x) / (1 - x)^3.
a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2.
a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End)
From Wesley Ivan Hurt, Apr 27 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
a(n) = (1/5) * Sum_{i=0..10*n} i. (End)
E.g.f.: x*(11 + 10*x)*exp(x). - Ilya Gutkovskiy, Apr 27 2016
EXAMPLE
From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2.
MAPLE
MATHEMATICA
Table[10 n^2 + n, {n, 50}] (* Wesley Ivan Hurt, Apr 27 2016 *)
PROG
(Magma) [10*n^2+n : n in [1..50]]; // Wesley Ivan Hurt, Apr 27 2016
(PARI) a(n)=10*n^2+n \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 18 2000
STATUS
approved