login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055437
a(n) = 10*n^2+n.
6
11, 42, 93, 164, 255, 366, 497, 648, 819, 1010, 1221, 1452, 1703, 1974, 2265, 2576, 2907, 3258, 3629, 4020, 4431, 4862, 5313, 5784, 6275, 6786, 7317, 7868, 8439, 9030, 9641, 10272, 10923, 11594, 12285, 12996, 13727, 14478, 15249, 16040, 16851, 17682, 18533
OFFSET
1,1
COMMENTS
a(n) = A055436(n) if 1<=n<10.
Number of edges in the join of the complete 4-partite graph of order 4n and the cycle graph of order n, K_n,n,n,n * C_n. - Roberto E. Martinez II, Jan 07 2002
FORMULA
From Bruno Berselli, Nov 26 2013: (Start)
G.f.: x*(11 + 9*x) / (1 - x)^3.
a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2.
a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End)
From Wesley Ivan Hurt, Apr 27 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
a(n) = (1/5) * Sum_{i=0..10*n} i. (End)
E.g.f.: x*(11 + 10*x)*exp(x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = A000217(6*n) - A000217(4*n). - Bruno Berselli, Sep 21 2016
EXAMPLE
From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2.
MAPLE
A055437:=n->10*n^2+n: seq(A055437(n), n=1..50); # Wesley Ivan Hurt, Apr 27 2016
MATHEMATICA
Table[10 n^2 + n, {n, 50}] (* Wesley Ivan Hurt, Apr 27 2016 *)
PROG
(Magma) [10*n^2+n : n in [1..50]]; // Wesley Ivan Hurt, Apr 27 2016
(PARI) a(n)=10*n^2+n \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 18 2000
STATUS
approved