login
A338627
a(n) is the smallest positive number k such that n consecutive integers starting at k have the same smallest number of squares needed to represent (A002828).
0
1, 11, 42, 75, 138, 713, 1672
OFFSET
1,2
EXAMPLE
75 = 1^2 + 5^2 + 7^2 = 5^2 + 5^2 + 5^2,
76 = 2^2 + 6^2 + 6^2,
77 = 2^2 + 3^2 + 8^2 = 4^2 + 5^2 + 6^2,
78 = 2^2 + 5^2 + 7^2.
These the first 4 consecutive numbers with the same smallest number of squares needed to represent, so a(4) = 75.
MATHEMATICA
A002828[n_] := Module[{s = SquaresR[Range[4], n]}, If[First[s] > 0, 1, Length[First[Split[s]]] + 1]]; Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[A002828[j], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 7}]
CROSSREFS
Cf. A002828.
Sequence in context: A249413 A003356 A063152 * A101985 A055437 A055436
KEYWORD
nonn,more
AUTHOR
Ilya Gutkovskiy, Nov 04 2020
STATUS
approved