login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101985 Numbers that occur exactly once in A289493 (= number of primes between 2n and 3n). 4
11, 42, 93, 110, 113, 156, 186, 196, 197, 220, 252, 292, 298, 362, 403, 429, 493, 503, 609, 644, 659, 727, 735, 778, 790, 886, 888, 920, 932, 952, 953, 1008, 1023, 1024, 1079, 1093, 1094, 1100, 1109, 1136, 1165, 1208, 1212, 1213, 1226, 1238, 1250, 1311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..48.

MATHEMATICA

f[n_] := PrimePi[3n] - PrimePi[2n]; t = Split[ Sort[ Table[ f[n], {n, 14000}] ]]; Flatten[ Select[t, Length[ # ] == 1 &]] (* Robert G. Wilson v, Feb 10 2005 *)

PROG

(PARI) bet2n3n(n)={ my(b=vecsort( vector(n, x, my(c=0); forprime(y=2*x+1, 3*x-1, c++); c))); for(x=1, n-2, if(b[x+1]>b[x] && b[x+1]<b[x+2], print1(b[x+1]", ")))} \\ Probably using A289493 and/or primepi(3n)-primepi(2n) would be faster. Edited and corrected by M. F. Hasler, Sep 29 2019

(PARI) \\ Size of vector dependent on how pessimistic one is on smoothness of primepi

primecount(a, b)=primepi(b)-primepi(a);

v=vector(14000);

for(k=1, oo, j=primecount(2*k, 3*k); if(j>#v, break, v[j]++));

for(k=1, 1311, if(v[k]==1, print1(k, ", "))) \\ Hugo Pfoertner, Sep 29 2019

CROSSREFS

Cf. A289493, A101984.

Sequence in context: A249413 A003356 A063152 * A055437 A055436 A213772

Adjacent sequences:  A101982 A101983 A101984 * A101986 A101987 A101988

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, Jan 29 2005

EXTENSIONS

More terms from Robert G. Wilson v, Feb 10 2005

Name edited by M. F. Hasler, Sep 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 17:34 EST 2019. Contains 329106 sequences. (Running on oeis4.)