OFFSET
0,1
REFERENCES
P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32.
LINKS
Andries E. Brouwer, Cages
M. Daven and C. A. Rodger, (k,g)-cages are 3-connected, Discr. Math., 199 (1999), 207-215.
Geoff Exoo, Regular graphs of given degree and girth
G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
Gordon Royle, Cubic Cages
Gordon Royle, Cages of higher valency
Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22.
FORMULA
T(k,g) >= A198300(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized g/2-gon of order k - 1. - Jason Kimberley, Jan 01 2013
EXAMPLE
First eight antidiagonals are:
3 4 5 6 7 8 9 10
4 6 10 14 24 30 58
5 8 19 26 67 80
6 10 30 42 ?
7 12 40 62
8 14 50
9 16
10
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Apr 26 2000
EXTENSIONS
Edited by Jason Kimberley, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013
STATUS
approved