login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A054760
Table T(n,k) = order of (n,k)-cage (smallest n-regular graph of girth k), n >= 2, k >= 3, read by antidiagonals.
22
3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 19, 14, 7, 8, 12, 30, 26, 24, 8, 9, 14, 40, 42, 67, 30, 9, 10, 16, 50, 62
OFFSET
0,1
REFERENCES
P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32.
LINKS
Andries E. Brouwer, Cages
M. Daven and C. A. Rodger, (k,g)-cages are 3-connected, Discr. Math., 199 (1999), 207-215.
G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
Gordon Royle, Cubic Cages
Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22.
FORMULA
T(k,g) >= A198300(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized g/2-gon of order k - 1. - Jason Kimberley, Jan 01 2013
EXAMPLE
First eight antidiagonals are:
3 4 5 6 7 8 9 10
4 6 10 14 24 30 58
5 8 19 26 67 80
6 10 30 42 ?
7 12 40 62
8 14 50
9 16
10
CROSSREFS
Moore lower bound: A198300.
Orders of cages: this sequence (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).
Graphs not required to be regular: A006787, A006856.
Sequence in context: A316353 A204002 A198300 * A079107 A205837 A262872
KEYWORD
nonn,tabl,nice,hard,more
AUTHOR
N. J. A. Sloane, Apr 26 2000
EXTENSIONS
Edited by Jason Kimberley, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013
STATUS
approved