login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000066 Smallest number of vertices in trivalent graph with girth (shortest cycle) = n.
(Formerly M1013 N0380)
16
4, 6, 10, 14, 24, 30, 58, 70, 112, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Also called the order of the (3,n) cage graph.

Recently (unpublished) McKay and Myrvold proved that the minimal graph on 112 vertices is unique. - May 20 2003

If there are n vertices and e edges, then 3n=2e, so n is always even.

Current lower bounds for a(13)..a(32) are 202, 258, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072. - from Table 3 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

Current upper bounds for a(13)..a(32) are 272, 384, 620, 960, 2176, 2560, 4324, 5376, 16028, 16206, 49326, 49608, 108906, 109200, 285852, 415104, 1141484, 1143408, 3649794, 3650304. - from Table 3 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

REFERENCES

A. T. Balaban, Trivalent graphs of girth nine and eleven and relationships among cages, Rev. Roum. Math. Pures et Appl. 18 (1973) 1033-1043.

Brendan McKay, personal communication.

H. Sachs, On regular graphs with given girth, pp. 91-97 of M. Fiedler, editor, Theory of Graphs and Its Applications: Proceedings of the Symposium, Smolenice, Czechoslovakia, 1963. Academic Press, NY, 1964.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=3..12.

Gabriela Araujo-Pardo, Geoffrey Exoo, and Robert Jajcay, Small bi-regular graphs of even girth Discrete Mathematics 339.2 (2016): 658-667.

Andries E. Brouwer, Cages

Geoff Exoo, Regular graphs of given degree and girth

G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).

Brendan McKay, W. Myrvold and J. Nadon, Fast backtracking principles applied to find new cages, 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, 188-191.

M. O'Keefe and P. K. Wong, A smallest graph of girth 10 and valency 3, J. Combin. Theory, B 29 (1980), 91-105.

Gordon Royle, Cubic Cages

Eric Weisstein's World of Mathematics, Cage Graph

Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22.

FORMULA

For all g > 2, a(g) >= A027383(g-1), with equality if and only if g = 3, 4, 5, 6, 8, or 12. - Jason Kimberley, Dec 21 2012 and Jan 01 2013

CROSSREFS

Cf. A006787, A052453 (number of such graphs).

Orders of cages: A054760 (n,k), this sequence (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n),  A191595 (n,5).

Sequence in context: A276983 A061227 A274522 * A266730 A241160 A061645

Adjacent sequences:  A000063 A000064 A000065 * A000067 A000068 A000069

KEYWORD

nonn,hard,more,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Matthew Cook, May 15 2003

Balaban proved 112 as an upper bound for a(11). The proof that it is also a lower bound is in the paper by Brendan McKay, W. Myrvold and J. Nadon.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 03:42 EDT 2017. Contains 290958 sequences.