OFFSET
0,8
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14a].
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 19, equations 19:4:1 - 19:4:8 at page 169.
LINKS
T. D. Noe, Rows n=0..50 of triangle, flattened
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
D. H. Lehmer, A new approach to Bernoulli polynomials, The American mathematical monthly 95.10 (1988): 905-911.
H. Pan and Z. W. Sun, New identities involving Bernoulli and Euler polynomials, arXiv:math/0407363 [math.NT], 2004.
FORMULA
B(m, x) = Sum{n=0..m} 1/(n+1)*Sum_{k=0..n} (-1)^k*C(n, k)*(x+k)^m.
EXAMPLE
The polynomials B(0,x), B(1,x), B(2,x), ... are 1; x-1/2; x^2-x+1/6; x^3-3/2*x^2+1/2*x; x^4-2*x^3+x^2-1/30; x^5-5/2*x^4+5/3*x^3-1/6*x; x^6-3*x^5+5/2*x^4-1/2*x^2+1/42; ...
1,
1, -1/2,
1, -1, 1/6,
1, -3/2, 1/2, 0,
1, -2, 1, 0, -1/30,
1, -5/2, 5/3, 0, -1/6, 0,
1, -3, 5/2, 0, -1/2, 0, 1/42,
...
1,
-1/2, 1,
1/6, -1, 1,
0, 1/2, -3/2, 1,
-1/30, 0, 1, -2, 1,
0, -1/6, 0, 5/3, -5/2, 1,
1/42, 0, -1/2, 0, 5/2, -3, 1,
...
MAPLE
with(numtheory); bernoulli(n, x);
MATHEMATICA
t[n_, k_] := Numerator[ Coefficient[ BernoulliB[n, x], x, n-k]]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Aug 07 2012 *)
PROG
(PARI) v=[]; for(n=0, 6, v=concat(v, apply(numerator, Vec(bernpol(n))))); v \\ Charles R Greathouse IV, Jun 08 2012
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jan 06 2000
EXTENSIONS
More terms from James A. Sellers, Jan 10 2000
STATUS
approved