login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196839 Denominators of coefficients of Bernoulli polynomials with rising powers of the variable. 20
1, 2, 1, 6, 1, 1, 1, 2, 2, 1, 30, 1, 1, 1, 1, 1, 6, 1, 3, 2, 1, 42, 1, 2, 1, 2, 1, 1, 1, 6, 1, 6, 1, 2, 2, 1, 30, 1, 3, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 1, 5, 1, 1, 2, 1, 66, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 1, 1, 6, 2, 1, 2730, 1, 1, 1, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The numerator triangle is found under A196838.

This is the row reversed triangle A053383.

REFERENCES

See also A053382 and A196838.

LINKS

Table of n, a(n) for n=0..83.

D. H. Lehmer, A new approach to Bernoulli polynomials, The American mathematical monthly 95.10 (1988): 905-911.

See A053382.

FORMULA

a(n,m) = denominator([x^m]Bernoulli(n,x)), n>=0, m=0..n.

E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).

See the Graham et al. reference given in A196838, eq. (7.80), p. 354.

EXAMPLE

The triangle starts with

n\m 0  1  2  3  4  5  6  7  8 ...

0:  1

1:  2  1

2:  6  1  1

3:  1  2  2  1

4: 30  1  1  1  1

5:  1  6  1  3  2  1

6: 42  1  2  1  2  1  1

7:  1  6  1  6  1  2  2  1

8: 30  1  3  1  3  1  3  1  1

...

For the start of the rational triangle A196838(n,m)/a(n,m) see the example section in A196838.

CROSSREFS

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

Sequence in context: A060480 A208682 A094673 * A295315 A089808 A290318

Adjacent sequences:  A196836 A196837 A196838 * A196840 A196841 A196842

KEYWORD

nonn,easy,tabl,frac

AUTHOR

Wolfdieter Lang, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 12:10 EST 2018. Contains 299411 sequences. (Running on oeis4.)