login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere. 6
1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.

b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005

a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

REFERENCES

J. Frank Adams, Vector fields on spheres, Topology, 1 (1962), 63-65.

J. Frank Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962) 39-41.

J. Frank Adams, Vector fields on spheres, Annals of Math. 75 (1962) 603-632.

A. Hurwitz, Uber die Komposition der quadratischen formen, Math. Annalen 88 (1923) 1-25.

M. Kervaire, Non-parallelizability of the sphere for n > 7, Proc. Nat. Acad. Sci. USA 44 (1958) 280-283.

J. Milnor, Some consequences of a theorem of Bott, Annals Math. 68 (1958) 444-449.

J. Radon, Lineare Scharen Orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922) 1-14.

LINKS

T. D. Noe, Table of n, a(n) for n=0..10000

FORMULA

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.

a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011

a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012

MAPLE

with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2, 1, 2], 4): d := iquo(ifactors(n+1)[2, 1, 2], 4): printf(`%d, `, 2^c+8*d-1) od:

nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # [Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013]

MATHEMATICA

a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-Fran├žois Alcover, May 16 2013, translated from C *)

PROG

(C) int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1, 2, ... */ int b, c, d, rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }

CROSSREFS

For another version see A003484. Cf. A047680, A001676.

Cf. A047530, A220466.

Sequence in context: A227984 A021991 A112132 * A038712 A065745 A227873

Adjacent sequences:  A053378 A053379 A053380 * A053382 A053383 A053384

KEYWORD

nonn,nice,easy,mult

AUTHOR

Warren D. Smith, Jan 06 2000

EXTENSIONS

More terms from James A. Sellers, Jun 01 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 10:09 EST 2014. Contains 252304 sequences.