login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere. 6
1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.

b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005

a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

REFERENCES

J. Frank Adams, Vector fields on spheres, Topology, 1 (1962), 63-65.

J. Frank Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962) 39-41.

J. Frank Adams, Vector fields on spheres, Annals of Math. 75 (1962) 603-632.

A. Hurwitz, Uber die Komposition der quadratischen formen, Math. Annalen 88 (1923) 1-25.

M. Kervaire, Non-parallelizability of the sphere for n > 7, Proc. Nat. Acad. Sci. USA 44 (1958) 280-283.

J. Milnor, Some consequences of a theorem of Bott, Annals Math. 68 (1958) 444-449.

J. Radon, Lineare Scharen Orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922) 1-14.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

FORMULA

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.

a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011

a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012

MAPLE

with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2, 1, 2], 4): d := iquo(ifactors(n+1)[2, 1, 2], 4): printf(`%d, `, 2^c+8*d-1) od:

nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013

MATHEMATICA

a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-Fran├žois Alcover, May 16 2013, translated from C *)

PROG

(C) int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1, 2, ... */ int b, c, d, rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }

CROSSREFS

For another version see A003484. Cf. A047680, A001676.

Cf. A047530, A220466.

Sequence in context: A227984 A021991 A112132 * A038712 A065745 A268670

Adjacent sequences:  A053378 A053379 A053380 * A053382 A053383 A053384

KEYWORD

nonn,nice,easy,mult

AUTHOR

Warren D. Smith, Jan 06 2000

EXTENSIONS

More terms from James A. Sellers, Jun 01 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 17:35 EST 2016. Contains 278755 sequences.