login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere. 6
1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.

b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005

a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

REFERENCES

J. Frank Adams, Vector fields on spheres, Topology, 1 (1962), 63-65.

J. Frank Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962) 39-41.

J. Frank Adams, Vector fields on spheres, Annals of Math. 75 (1962) 603-632.

A. Hurwitz, Uber die Komposition der quadratischen formen, Math. Annalen 88 (1923) 1-25.

M. Kervaire, Non-parallelizability of the sphere for n > 7, Proc. Nat. Acad. Sci. USA 44 (1958) 280-283.

J. Milnor, Some consequences of a theorem of Bott, Annals Math. 68 (1958) 444-449.

J. Radon, Lineare Scharen Orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922) 1-14.

LINKS

T. D. Noe, Table of n, a(n) for n=0..10000

FORMULA

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.

a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011

a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012

MAPLE

with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2, 1, 2], 4): d := iquo(ifactors(n+1)[2, 1, 2], 4): printf(`%d, `, 2^c+8*d-1) od:

nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # [Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013]

MATHEMATICA

a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-Fran├žois Alcover, May 16 2013, translated from C *)

PROG

(C) int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1, 2, ... */ int b, c, d, rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }

CROSSREFS

For another version see A003484. Cf. A047680, A001676.

Cf. A047530, A220466.

Sequence in context: A227984 A021991 A112132 * A038712 A065745 A227873

Adjacent sequences:  A053378 A053379 A053380 * A053382 A053383 A053384

KEYWORD

nonn,nice,easy,mult

AUTHOR

Warren D. Smith, Jan 06 2000

EXTENSIONS

More terms from James A. Sellers, Jun 01 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 25 03:21 EDT 2014. Contains 248517 sequences.