The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328747 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k. 8
 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 7, 1, 0, 1, 1, 15, 31, 19, 1, 0, 1, 1, 31, 115, 175, 51, 1, 0, 1, 1, 63, 391, 1255, 991, 141, 1, 0, 1, 1, 127, 1267, 8071, 13671, 5881, 393, 1, 0, 1, 1, 255, 3991, 49399, 161671, 160461, 35617, 1107, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0. For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019 LINKS Seiichi Manyama, Antidiagonals n = 0..100, flattened EXAMPLE Square array begins:    1, 1,  1,   1,     1,      1, ...    1, 1,  1,   1,     1,      1, ...    0, 1,  3,   7,    15,     31, ...    0, 1,  7,  31,   115,    391, ...    0, 1, 19, 175,  1255,   8071, ...    0, 1, 51, 991, 13671, 161671, ... MATHEMATICA T[n_, k_] := Sum[(-1)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *) CROSSREFS Columns k=0..5 give A019590(n+1), A000012, A002426, A172634, A328725, A328750. Main diagonal gives A328811. T(n,n+1) gives A328813. Cf. A309010, A328748, A328807. Sequence in context: A271344 A327622 A183134 * A346061 A053382 A031253 Adjacent sequences:  A328744 A328745 A328746 * A328748 A328749 A328750 KEYWORD nonn,tabl AUTHOR Seiichi Manyama, Oct 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 08:19 EST 2021. Contains 349419 sequences. (Running on oeis4.)