login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053275 Coefficients of the '7th order' mock theta function F_0(q) 5
1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 3, 2, 3, 3, 3, 2, 5, 3, 5, 4, 6, 5, 7, 5, 7, 7, 9, 7, 11, 9, 11, 11, 13, 12, 15, 13, 17, 16, 19, 17, 23, 21, 24, 23, 27, 26, 32, 29, 34, 34, 38, 37, 44, 42, 48, 48, 54, 52, 60, 58, 66, 67, 73, 72, 82, 81, 90, 90, 100, 99, 111, 110, 121, 123 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

The rank of a partition is its largest part minus the number of parts.

REFERENCES

George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134

Dean Hickerson, On the seventh order mock theta functions, Inventiones Mathematicae, 94 (1988) 661-677

Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355

Atle Selberg, Uber die Mock-Thetafunktionen siebenter Ordnung, Arch. Math. Naturvidenskab, 41 (1938) 3-15

LINKS

Table of n, a(n) for n=0..76.

FORMULA

G.f.: F_0(q) = sum for n >= 0 of q^n^2/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n)))

a(n) = number of partitions of 7n with rank == 0 (mod 7) minus number with rank == 2 (mod 7)

MATHEMATICA

Series[Sum[q^n^2/Product[1-q^k, {k, n+1, 2n}], {n, 0, 10}], {q, 0, 100}]

CROSSREFS

Other '7th order' mock theta functions are at A053276, A053277, A053278, A053279, A053280.

Sequence in context: A185318 A008622 A029414 * A025816 A025813 A161231

Adjacent sequences:  A053272 A053273 A053274 * A053276 A053277 A053278

KEYWORD

nonn,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 30 13:31 EDT 2014. Contains 247425 sequences.