This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053277 Coefficients of the '7th order' mock theta function F_2(q) 6
 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 4, 5, 4, 6, 5, 7, 7, 8, 8, 10, 9, 11, 11, 13, 13, 16, 15, 17, 18, 21, 20, 23, 23, 27, 27, 31, 31, 35, 35, 39, 41, 45, 45, 51, 51, 57, 59, 64, 66, 73, 74, 81, 83, 91, 93, 102, 104, 113, 117, 126, 130, 141, 144, 156, 162, 174, 178, 192, 198, 212 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The rank of a partition is its largest part minus the number of parts. REFERENCES Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355 Atle Selberg, Uber die Mock-Thetafunktionen siebenter Ordnung, Arch. Math. Naturvidenskab, 41 (1938) 3-15 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134. Dean Hickerson, On the seventh order mock theta functions, Inventiones Mathematicae, 94 (1988) 661-677. FORMULA G.f.: F_2(q) = sum for n >= 0 of q^(n(n+1))/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))) a(n) = number of partitions of 7n+2 with rank == 1 (mod 7) minus number with rank == 2 (mod 7) MATHEMATICA Series[Sum[q^(n^2+n)/Product[1-q^k, {k, n+1, 2n+1}], {n, 0, 9}], {q, 0, 100}] CROSSREFS Other '7th order' mock theta functions are at A053275, A053276, A053278, A053279, A053280. Sequence in context: A178697 A255065 A027349 * A078661 A029263 A097575 Adjacent sequences:  A053274 A053275 A053276 * A053278 A053279 A053280 KEYWORD nonn,easy AUTHOR Dean Hickerson, Dec 19 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 02:53 EDT 2017. Contains 289866 sequences.