This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053276 Coefficients of the '7th order' mock theta function F_1(q) 6
 0, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 2, 4, 4, 4, 4, 6, 5, 6, 6, 7, 8, 9, 8, 10, 11, 11, 12, 14, 13, 16, 16, 18, 19, 21, 20, 24, 25, 26, 28, 31, 31, 35, 36, 39, 41, 45, 45, 50, 53, 55, 58, 64, 65, 71, 73, 79, 83, 89, 90, 99, 103, 109, 114, 123, 126, 135, 141, 149, 157, 167, 171, 185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The rank of a partition is its largest part minus the number of parts. REFERENCES Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355 Atle Selberg, Uber die Mock-Thetafunktionen siebenter Ordnung, Arch. Math. Naturvidenskab, 41 (1938) 3-15 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134. Dean Hickerson, On the seventh order mock theta functions, Inventiones Mathematicae, 94 (1988) 661-677. FORMULA G.f.: F_1(q) = sum for n >= 1 of q^n^2/((1-q^n)(1-q^(n+1))...(1-q^(2n-1))) a(n) = number of partitions of 7n-1 with rank == 2 (mod 7) minus number with rank == 3 (mod 7) MATHEMATICA Series[Sum[q^n^2/Product[1-q^k, {k, n, 2n-1}], {n, 1, 10}], {q, 0, 100}] CROSSREFS Other '7th order' mock theta functions are at A053275, A053277, A053278, A053279, A053280. Sequence in context: A068796 A154804 A207642 * A064065 A284486 A232194 Adjacent sequences:  A053273 A053274 A053275 * A053277 A053278 A053279 KEYWORD nonn,easy AUTHOR Dean Hickerson, Dec 19 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 17 12:39 EDT 2018. Contains 300557 sequences. (Running on oeis4.)