login
A053280
A '7th-order' mock theta function.
6
1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 5, 4, 4, 5, 6, 5, 6, 6, 7, 7, 8, 8, 10, 9, 10, 11, 12, 11, 14, 13, 15, 16, 17, 17, 20, 19, 21, 22, 24, 24, 27, 27, 30, 31, 33, 34, 38, 37, 41, 43, 46, 46, 51, 52, 56, 58, 62, 63, 69, 70, 75, 78, 83, 85, 92, 94
OFFSET
0,13
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Dean Hickerson, On the seventh order mock theta functions, Inventiones Mathematicae, 94 (1988) 661-677.
FORMULA
G.f.: g(q^3, q^7), where g(x, q) = Sum_{n >= 1} q^(n(n-1))/((1-x)(1-q/x)(1-q x)(1-q^2/x)...(1-q^(n-1) x)(1-q^n/x)).
a(n) ~ exp(Pi*sqrt(2*n/21)) / (2^(3/2) * sin(3*Pi/7) * sqrt(7*n)). - Vaclav Kotesovec, Jun 14 2019
MATHEMATICA
Series[Sum[q^(7n(n-1))/Product[1-q^Abs[7k+3], {k, -n, n-1}], {n, 1, 4}], {q, 0, 100}]
nmax = 100; CoefficientList[Series[Sum[x^(7*k*(k-1))/Product[1-x^Abs[7*j+3], {j, -k, k-1}], {k, 1, Floor[Sqrt[nmax/7]]+1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 14 2019 *)
CROSSREFS
Other '7th-order' mock theta functions are at A053275, A053276, A053277, A053278, A053279.
Sequence in context: A347698 A338336 A298783 * A289122 A370809 A025832
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved