This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008622 Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)). 0
 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 4, 3, 4, 3, 5, 3, 5, 4, 6, 4, 6, 5, 7, 5, 7, 6, 8, 6, 9, 7, 9, 7, 10, 8, 11, 9, 11, 9, 12, 10, 13, 11, 14, 11, 14, 12, 16, 13, 16, 14, 17, 14, 18, 16, 19, 16, 20, 17, 21, 18, 22, 19, 23, 20, 24, 21, 25, 22, 26, 23, 28, 24, 28 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS Molien series of 3-dimensional representation of GL(3,2) over GF(2). REFERENCES A. Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc., 44 (1997),806-812. D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 106. LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 231 FORMULA a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=0, a(6)=1, a(7)=1, a(8)=1, a(9)=0, a(10)=1, a(11)=1, a(12)=2, a(13)=1, a(14)=2, a(15)=1, a(16)=2, a(n)=a(n-4)+a(n-6)+a(n-7)-a(n-10)-a(n-11)-a(n-13)+a(n-17). - Harvey P. Dale, May 09 2013 MAPLE 1/(1-x^4)/(1-x^6)/(1-x^7); MATHEMATICA CoefficientList[Series[1/((1-x^4)(1-x^6)(1-x^7)), {x, 0, 90}], x] (* or *) LinearRecurrence[{0, 0, 0, 1, 0, 1, 1, 0, 0, -1, -1, 0, -1, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2}, 90] (* Harvey P. Dale, May 09 2013 *) CROSSREFS Sequence in context: A176725 A085029 A185318 * A029414 A053275 A025816 Adjacent sequences:  A008619 A008620 A008621 * A008623 A008624 A008625 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .