login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053265 Coefficients of the '5th order' mock theta function F_1(q) 11
1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20, 21, 24, 26, 28, 31, 34, 37, 40, 44, 47, 51, 56, 60, 65, 71, 76, 82, 89, 95, 103, 111, 119, 128, 138, 148, 158, 171, 182, 195, 210, 223, 239, 256, 273, 292, 312, 332, 354, 378, 402, 428 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134

George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255

Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 20, 22, 25

George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304

LINKS

Table of n, a(n) for n=0..66.

FORMULA

G.f.: F_1(q) = sum for n >= 0 of q^(2n(n+1))/((1-q)(1-q^3)...(1-q^(2n+1)))

MATHEMATICA

Series[Sum[q^(2n(n+1))/Product[1-q^(2k+1), {k, 0, n}], {n, 0, 6}], {q, 0, 100}]

CROSSREFS

Other '5th order' mock theta functions are at A053256, A053257, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053266, A053267.

Sequence in context: A189709 A025771 A154403 * A035452 A199575 A120187

Adjacent sequences:  A053262 A053263 A053264 * A053266 A053267 A053268

KEYWORD

nonn,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 24 00:01 EDT 2014. Contains 247192 sequences.