OFFSET
0,9
COMMENTS
The Ferraro problem asks for a proof that, for n>=9, floor(F(n)^(1/4)) = floor(F(n-4)^(1/4)+F(n-8)^(1/4)). As of November 2005 this problem remained unsolved.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
P. J. Ferraro, Problem B-886, Fibonacci Q., 37 (No. 4, Nov. 1999); 43 (No. 4, Nov. 2005), p. 372.
Raphael Schumacher, Solution to Problem B-886, Fibonacci Q., 58 (No. 4, Nov. 2020) pp. 368-370.
MATHEMATICA
Table[Floor[Fibonacci[n]^(1/4)], {n, 0, 80}] (* Vincenzo Librandi, Aug 28 2016 *)
PROG
(Magma) [Floor(Fibonacci(n)^(1/4)): n in [0..80]]; // Vincenzo Librandi, Aug 28 2016
(PARI) a(n) = sqrtnint(fibonacci(n), 4); \\ Michel Marcus, Aug 28 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 09 2011
STATUS
approved