login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053260 Coefficients of the '5th order' mock theta function psi_0(q) 13
0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 8, 9, 10, 9, 11, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 21, 22, 22, 24, 25, 25, 27, 28, 29, 30, 32, 32, 34, 36, 36, 39, 40, 41, 44, 45, 46 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

COMMENTS

Number of partitions of n such that each part occurs at most twice, the largest part is unique and if k occurs as a part then all smaller positive integers occur.

Strongly unimodal compositions with first part 1 and each up-step is by at most 1 (left-smoothness); with this interpretation one should set a(0)=1; see example. Replacing "strongly" by "weakly" in the condition gives A001524. Dropping the requirement of unimodality gives A005169. [Joerg Arndt, Dec 09 2012]

REFERENCES

George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134

George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255

Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 21, 22

George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: psi_0(q) = sum(n>=0, q^((n+1)*(n+2)/2) * (1+q)*(1+q^2)*...*(1+q^n) ).

EXAMPLE

From Joerg Arndt, Dec 09 2012: (Start)

The a(42)=8 strongly unimodal left-smooth compositions are

[ #]       composition

[ 1]    [ 1 2 3 4 5 6 7 5 4 3 2 ]

[ 2]    [ 1 2 3 4 5 6 7 6 4 3 1 ]

[ 3]    [ 1 2 3 4 5 6 7 6 5 2 1 ]

[ 4]    [ 1 2 3 4 5 6 7 6 5 3 ]

[ 5]    [ 1 2 3 4 5 6 7 8 3 2 1 ]

[ 6]    [ 1 2 3 4 5 6 7 8 4 2 ]

[ 7]    [ 1 2 3 4 5 6 7 8 5 1 ]

[ 8]    [ 1 2 3 4 5 6 7 8 6 ]

(End)

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

       b(n, i-1)+`if`(i>n, 0, b(n-i, i-1))))

    end:

a:= proc(n) local h, k, m, r;

      m, r:= floor((sqrt(n*8+1)-1)/2), 0;

      for k from m by -1 do h:= k*(k+1);

        if h<=n then break fi;

        r:= r+b(n-h/2, k-1)

      od: r

    end:

seq(a(n), n=0..100);  # Alois P. Heinz, Aug 02 2013

MATHEMATICA

Series[Sum[q^((n+1)(n+2)/2) Product[1+q^k, {k, 1, n}], {n, 0, 12}], {q, 0, 100}]

PROG

(PARI)

N = 66;  x = 'x + O('x^N);

gf = sum(n=1, N, x^(n*(n+1)/2) * prod(k=1, n-1, 1+x^k) ) + 'c0;

v = Vec(gf); v[1]-='c0; v

/* Joerg Arndt, Apr 21 2013 */

CROSSREFS

Other '5th order' mock theta functions are at A053256, A053257, A053258, A053259, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Sequence in context: A102382 A024890 A007895 * A140223 A014643 A236265

Adjacent sequences:  A053257 A053258 A053259 * A053261 A053262 A053263

KEYWORD

nonn,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 16 15:31 EDT 2014. Contains 246817 sequences.