login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052854
Number of forests of ordered trees on n total nodes.
5
1, 1, 2, 4, 10, 26, 77, 235, 758, 2504, 8483, 29203, 102030, 360442, 1285926, 4625102, 16754302, 61067430, 223803775, 824188993, 3048383517, 11318928477, 42176798315, 157664823501, 591109863049, 2222121888117, 8374151243258, 31630394287364, 119725350703472
OFFSET
0,3
COMMENTS
If B is a collection in which there are A000108(n-1) [Catalan numbers] things with n points, a(n) is the number of multisets of B with a total of n points.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 45.
P. Flajolet et al., A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics, arXiv:math/0606370 [math.CO], 2006.
Florian Luca and Pantelimon Stanica, On the Euler function of the Catalan numbers, Journal of Number Theory, Volume 132, Issue 7, July 2012, Pages 1404-1424.
FORMULA
Euler transform of Catalan numbers C(n-1) (cf. A000108).
n*a(n) = Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} binomial(2*d-2, d-1) = A066768(k). - Vladeta Jovovic, Jan 17 2002
G.f.: 1/(Product_{k>0} (1-x^k)^C(k-1)) where C() is Catalan numbers.
G.f.: A(z) = Product_{n >= 1} (1-z^n)^(-A000108(n)) = exp(Sum_{k >= 1} C(z^k)/k), where C(z) is the g.f. for the Catalan numbers.
a(n) ~ K 4^(n-1)/sqrt(Pi*n^3), where K ~ 1.71603053492228196404746... (see A246949).
MAPLE
spec := [S, {B=Sequence(C), C=Prod(Z, B), S=Set(C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); # version 1
spec := [ C, {B=Union(Z, Prod(B, B)), C=Set(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)]; # version 2
# third Maple program:
with(numtheory):
b:= proc(n) option remember; binomial(2*n, n) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2015
MATHEMATICA
max = 27; f[x_] := 1/Product[ (1 - x^k)^CatalanNumber[k - 1], {k, 1, max}]; se = Series[f[x], {x, 0, max}]; CoefficientList[se, x] (* Jean-François Alcover, Oct 05 2011, after g.f. *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(1/prod(k=1, n, (1-x^k+x*O(x^n))^((2*k-2)!/k!/(k-1)!)), n))
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Better title from Geoffrey Critzer, Feb 22 2013
Minor edits by Vaclav Kotesovec, May 13 2014
STATUS
approved