The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179381 Row sums of A179318. 6
 1, 2, 4, 10, 26, 78, 236, 770, 2520, 8606, 29364, 103302, 362226, 1298882, 4645670, 16897224, 61296686, 225457006, 826950080, 3067763394, 11353597198, 42414220022, 158095481910, 594108418428, 2227714454332, 8412269224862, 31704876569698, 120223392641084, 455053649594196, 1731861709709542, 6579658381972974 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..1650 StackExchange, Infinite product with the Catalan numbers, Mar 12 2018 FORMULA G.f.: -1 + prod(n>=1, 1/(1-C(n-1)*x^n), where C(n) = A000108(n). - Vladimir Kruchinin, Aug 18 2014 a(n) = s(1,n), where s(m,n) = C(n-1)+sum(k=m..n/2, C(k-1)*s(k,n-k), a(n,n) = C(n-1), C(n) are the Catalan numbers (A000108). - Vladimir Kruchinin, Sep 06 2014 a(n) ~ c * 4^n / n^(3/2), where c = 1 / (4*sqrt(Pi) * Product_{k>=1} (1 - binomial(2*k-2,k-1) / (k * 4^k))) = 0.2422046382280667... - Vaclav Kotesovec, Mar 08 2018 EXAMPLE The table has shape A000041 and begins: 1 1 1 2 1 1 5 2 1 1 1 14 5 2 2 1 1 1 so a(n) begins 1 2 4 10 26 ... PROG (PARI) N = 66;  x = 'x +O('x^N); C(n) = binomial(2*n, n)/(n+1); gf = -1 + 1/prod(n=1, N, 1 - C(n-1)*x^n ); Vec(gf) \\ Joerg Arndt, Aug 18 2014 (Maxima) C(n):=  1/(n+1)*binomial(2*n, n); s(m, n):=if m>n then 0 else if n=m then C(n-1) else sum(C(k-1)*s(k, n-k), k, m, ceiling(n/2))+C(n-1); makelist(s(1, n), n, 1, 27);  /* Vladimir Kruchinin, Sep 06 2014 */ CROSSREFS Cf. A000108, A318264. Sequence in context: A148101 A052854 A148102 * A096807 A003239 A195924 Adjacent sequences:  A179378 A179379 A179380 * A179382 A179383 A179384 KEYWORD easy,nonn AUTHOR Alford Arnold, Jul 12 2010 EXTENSIONS Terms 8606 and beyond (using Kruchinin's formula) by Joerg Arndt, Aug 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 20:08 EST 2020. Contains 338750 sequences. (Running on oeis4.)