login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052857 A simple grammar. 0
0, 1, 2, 15, 184, 3145, 68976, 1846999, 58413440, 2130740721, 88061420800, 4066862460991, 207556068584448, 11600364266112505, 704664527894104064, 46226086991634882375, 3256882066245640093696, 245279323467051422886241 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 825

FORMULA

E.g.f.: exp(RootOf(exp(_Z)*x*_Z+exp(_Z)*x-_Z))*x.

a(n) = (n-1)!*Sum_{k=1..n-1} n^k*binomial(n-2,k-1)/k!, a(1)=1. - Vladimir Kruchinin, May 10 2011

a(n) = n!*hypergeom([-n+2], [2], -n) for n>=2. - Peter Luschny, Apr 20 2016

MAPLE

spec := [S, {C=Set(B), S=Prod(Z, C), B=Sequence(S, 1<= card)}, labeled]:

seq(combstruct[count](spec, size=n), n=0..20);

# Alternatively:

a := n -> `if`(n<2, n, n!*hypergeom([-n+2], [2], -n));

seq(simplify(a(n)), n=0..17); # Peter Luschny, Apr 20 2016

MATHEMATICA

Table[If[0 <= n <= 1, n, (n - 1)! Sum[(n^k Binomial[n - 2, k - 1])/k!, {k, n - 1}]], {n, 0, 12}] (* Michael De Vlieger, Apr 20 2016 *)

PROG

(Maxima)

a(n):=if n=1 then 1 else ((n-1)!*sum((n^k*binomial(n-2, k-1))/k!, k, 1, n-1)); \\ Vladimir Kruchinin, May 10 2011

CROSSREFS

Sequence in context: A208409 A196792 A210655 * A053492 A268420 A208402

Adjacent sequences:  A052854 A052855 A052856 * A052858 A052859 A052860

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 10:32 EST 2016. Contains 278971 sequences.