login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052852 E.g.f.: (x/(1-x))*exp(x/(1-x)). 32
0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A simple grammar.

Number of {121,212}-avoiding n-ary words of length n. - Ralf Stephan, Apr 20 2004

The infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n) when n is a positive integer. - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008

REFERENCES

D. Angell, A family of continued fractions, J. Numb. Theory 130 (2010) 904-911 doi:10.1016/j.jnt.2009.12.003, Section 2.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

David Angell, A family of continued fractions, Journal of Number Theory, Volume 130, Issue 4, April 2010, Pages 904-911.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 820

F. Hivert, J.-C. Novelli and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.

John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.

Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017, Table 2 on p. 13.

Index entries for sequences related to Laguerre polynomials

FORMULA

D-finite with recurrence: a(1)=1, a(0)=0, (n^2+2*n)*a(n)+(-4-2*n)*a(n+1)+ a(n+2)=0.

a(n) = Sum_{m=0..n} n!*binomial(n+2, n-m)/m!. - Wolfdieter Lang, Jun 19 2001

a(n) = n*A002720(n-1). [Riordan] - Vladeta Jovovic, Mar 18 2005

Related to an n-dimensional series : for n>=1, a(n)=(n!/e)* sum_{k_n>=k_{n-1}>=...>=k_1>=0}1/(k_n)!). - Benoit Cloitre, Sep 30 2006

E.g.f.: (x/(1-x))*exp((x/(1-x)))  =(x/(1-x))*G(0); G(k)=1+x/((2*k+1)*(1-x)-x*(1-x)*(2*k+1)/(x+(1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011

a(n) = D^n(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000262 and A005493. - Peter Bala, Nov 25 2011

a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012

a(n) = (n+1)!*hypergeom([-n+1], [3], -1)/2 for n>=1. - Peter Luschny, Oct 18 2014

a(n) = Sum_{k=0..n} L(n,k)*k; L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014

a(n) = (n-1)!*LaguerreL(n-1, 2, -1) for n>=1. - Peter Luschny, Apr 08 2015

The series reversion of the e.g.f. equals W(x)/(1 + W(x)) = x - 2^2*x^2/2! + 3^3*x^3/3! - 4^4*x^4/4! + ..., essentially the e.g.f. for a signed version of A000312, where W(x) is Lambert's W-function (see A000169). - Peter Bala, Jun 14 2016

MAPLE

spec := [S, {B=Set(C), C=Sequence(Z, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

a := n -> `if`(n=0, 0, (n+1)!*hypergeom([-n+1], [3], -1)/2); seq(simplify(a(n)), n=0..18); # Peter Luschny, Oct 18 2014

MATHEMATICA

Table[n!*SeriesCoefficient[(x/(1-x))*E^(x/(1-x)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 09 2012 *)

PROG

(PARI) x='x+O('x^30); concat([0], Vec(serlaplace((x/(1-x))*exp(x/(1-x))))) \\ G. C. Greubel, May 15 2018

CROSSREFS

Row sums of unsigned triangle A062139 (generalized a=2 Laguerre).

Cf. A000262. A000169, A000312.

Sequence in context: A205077 A292928 A209881 * A288869 A288268 A265952

Adjacent sequences:  A052849 A052850 A052851 * A052853 A052854 A052855

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 14:10 EST 2020. Contains 338683 sequences. (Running on oeis4.)