The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052852 E.g.f.: (x/(1-x))*exp(x/(1-x)). 32
 0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A simple grammar. Number of {121,212}-avoiding n-ary words of length n. - Ralf Stephan, Apr 20 2004 The infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n) when n is a positive integer. - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008 REFERENCES D. Angell, A family of continued fractions, J. Numb. Theory 130 (2010) 904-911 doi:10.1016/j.jnt.2009.12.003, Section 2. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 David Angell, A family of continued fractions, Journal of Number Theory, Volume 130, Issue 4, April 2010, Pages 904-911. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 820 F. Hivert, J.-C. Novelli and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006. John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers. Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017, Table 2 on p. 13. FORMULA D-finite with recurrence: a(1)=1, a(0)=0, (n^2+2*n)*a(n)+(-4-2*n)*a(n+1)+ a(n+2)=0. a(n) = Sum_{m=0..n} n!*binomial(n+2, n-m)/m!. - Wolfdieter Lang, Jun 19 2001 a(n) = n*A002720(n-1). [Riordan] - Vladeta Jovovic, Mar 18 2005 Related to an n-dimensional series : for n>=1, a(n)=(n!/e)* sum_{k_n>=k_{n-1}>=...>=k_1>=0}1/(k_n)!). - Benoit Cloitre, Sep 30 2006 E.g.f.: (x/(1-x))*exp((x/(1-x)))  =(x/(1-x))*G(0); G(k)=1+x/((2*k+1)*(1-x)-x*(1-x)*(2*k+1)/(x+(1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011 a(n) = D^n(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000262 and A005493. - Peter Bala, Nov 25 2011 a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012 a(n) = (n+1)!*hypergeom([-n+1], , -1)/2 for n>=1. - Peter Luschny, Oct 18 2014 a(n) = Sum_{k=0..n} L(n,k)*k; L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014 a(n) = (n-1)!*LaguerreL(n-1, 2, -1) for n>=1. - Peter Luschny, Apr 08 2015 The series reversion of the e.g.f. equals W(x)/(1 + W(x)) = x - 2^2*x^2/2! + 3^3*x^3/3! - 4^4*x^4/4! + ..., essentially the e.g.f. for a signed version of A000312, where W(x) is Lambert's W-function (see A000169). - Peter Bala, Jun 14 2016 MAPLE spec := [S, {B=Set(C), C=Sequence(Z, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); a := n -> `if`(n=0, 0, (n+1)!*hypergeom([-n+1], , -1)/2); seq(simplify(a(n)), n=0..18); # Peter Luschny, Oct 18 2014 MATHEMATICA Table[n!*SeriesCoefficient[(x/(1-x))*E^(x/(1-x)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 09 2012 *) PROG (PARI) x='x+O('x^30); concat(, Vec(serlaplace((x/(1-x))*exp(x/(1-x))))) \\ G. C. Greubel, May 15 2018 CROSSREFS Row sums of unsigned triangle A062139 (generalized a=2 Laguerre). Cf. A000262. A000169, A000312. Sequence in context: A205077 A292928 A209881 * A288869 A288268 A265952 Adjacent sequences:  A052849 A052850 A052851 * A052853 A052854 A052855 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 14:10 EST 2020. Contains 338683 sequences. (Running on oeis4.)