login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046976 Numerators of Taylor series for sec(x) = 1/cos(x). 6
1, 1, 5, 61, 277, 50521, 540553, 199360981, 3878302429, 2404879675441, 14814847529501, 69348874393137901, 238685140977801337, 4087072509293123892361, 13181680435827682794403, 441543893249023104553682821, 2088463430347521052196056349 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also numerator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.

G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..243 (terms 0..100 from T. D. Noe)

X. Chen, Recursive formulas for zeta(2*k) and L(2*k-1), Coll. Math. J. 26 (5) (1995) 372-376. See numerators of D_(2k-1).

Eric Weisstein's World of Mathematics, Secant

Eric Weisstein's World of Mathematics, Dirichlet Beta Function

Eric Weisstein's World of Mathematics, Hyperbolic Secant

FORMULA

a(n)/A046977(n) = A000364(n)/(2n)!.

Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = numerator(R(2*n+1)) and A046977(n) = denominator(R(2*n+1)). - Peter Luschny, Aug 25 2015

EXAMPLE

sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + 277/8064*x^8 + 50521/3628800*x^10 + ...

MAPLE

ZBS := z -> (Zeta(0, z, 1/4) - Zeta(0, z, 3/4))/(2^z-2):

R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:

seq(numer(R(2*n+1)), n=0..16); # Peter Luschny, Aug 25 2015

MATHEMATICA

Numerator[Partition[CoefficientList[Series[Sec[x], {x, 0, 30}], x], 2][[All, 1]]]

CROSSREFS

Cf. A000364, A046977, A053005, A099612.

Sequence in context: A201848 A087871 A242194 * A092838 A196296 A196214

Adjacent sequences:  A046973 A046974 A046975 * A046977 A046978 A046979

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 20:30 EST 2018. Contains 299297 sequences. (Running on oeis4.)