login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046976 Numerators of Taylor series for sec(x) = 1/cos(x). 6
1, 1, 5, 61, 277, 50521, 540553, 199360981, 3878302429, 2404879675441, 14814847529501, 69348874393137901, 238685140977801337, 4087072509293123892361, 13181680435827682794403, 441543893249023104553682821, 2088463430347521052196056349 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also numerator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m.

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.

G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..243 (terms 0..100 from T. D. Noe)

X. Chen, Recursive formulas for zeta(2*k) and L(2*k-1), Coll. Math. J. 26 (5) (1995) 372-376. See numerators of D_(2k-1).

Eric Weisstein's World of Mathematics, Secant

Eric Weisstein's World of Mathematics, Dirichlet Beta Function

Eric Weisstein's World of Mathematics, Hyperbolic Secant

FORMULA

a(n)/A046977(n) = A000364(n)/(2n)!.

Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = numerator(R(2*n+1)) and A046977(n) = denominator(R(2*n+1)). - Peter Luschny, Aug 25 2015

EXAMPLE

sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + 277/8064*x^8 + 50521/3628800*x^10 + ...

MAPLE

ZBS := z -> (Zeta(0, z, 1/4) - Zeta(0, z, 3/4))/(2^z-2):

R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:

seq(numer(R(2*n+1)), n=0..16); # Peter Luschny, Aug 25 2015

MATHEMATICA

Numerator[Partition[CoefficientList[Series[Sec[x], {x, 0, 30}], x], 2][[All, 1]]]

CROSSREFS

Cf. A000364, A046977, A053005, A099612.

Sequence in context: A201848 A087871 A242194 * A092838 A196296 A196214

Adjacent sequences: A046973 A046974 A046975 * A046977 A046978 A046979

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:00 EST 2022. Contains 358648 sequences. (Running on oeis4.)