login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053005 Denominator of beta(2n+1)/Pi^(2n+1), where beta(m) = Sum_{k=0..inf} (-1)^k/(2k+1)^m. 2
4, 32, 1536, 184320, 8257536, 14863564800, 1569592442880, 5713316492083200, 1096956766479974400, 6713375410857443328000, 408173224980132554342400, 18857602994082124010618880000, 640578267860512766391484416000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 384, Problem 15.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Problem 37, beta(n).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

Eric Weisstein's World of Mathematics, Dirichlet Beta Function

EXAMPLE

beta(5) = 5*Pi^5/1536 so a(2)=1536.

MATHEMATICA

beta[1] = Pi/4; beta[m_] := (Zeta[m, 1/4] - Zeta[m, 3/4])/4^m; a[n_, p_] := a[n, p] = beta[2*n+1]/Pi^(2*n+1) // N[#, p]& // Rationalize[#, 0]& // Denominator; a[n_] := Module[{p = 16}, a[n, p]; p = 2*p; While[a[n, p] != a[n, p/2], p = 2*p]; a[n, p]]; Table[a[n], {n, 0, 13}] (* Jean-Fran├žois Alcover, Aug 19 2013 *)

CROSSREFS

Cf. A046976.

Sequence in context: A231991 A028369 A081790 * A012092 A027639 A117620

Adjacent sequences:  A053002 A053003 A053004 * A053006 A053007 A053008

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane, Feb 21 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 04:09 EST 2014. Contains 250155 sequences.