login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099612 Numerators of coefficients in expansion of sec(x) + tan(x). 12
1, 1, 1, 1, 5, 2, 61, 17, 277, 62, 50521, 1382, 540553, 21844, 199360981, 929569, 3878302429, 6404582, 2404879675441, 443861162, 14814847529501, 18888466084, 69348874393137901, 113927491862, 238685140977801337, 58870668456604, 4087072509293123892361 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..26.

L. Euler, On the sums of series of reciprocals, par. 13, arXiv:math/0506415 [math.HO], 2005-2008.

L. Euler, De summis serierum reciprocarum, E41, par. 13, Euler Archive.

FORMULA

Let R(x) = (-1)^floor(x/2)*(4^(x+1)-2^(x+1))*((HurwitzZeta(-x,3/4) - HurwitzZeta(-x,1/4)) /(2^(-x)-2)-Zeta(-x))/Gamma(x+1) then a(n) = numerator(R(n)) and A099617(n) = denominator(R(n)) for n>=1. - Peter Luschny, Aug 25 2015

Let F(x,t) = exp(-I*t*x)*(1+(exp(exp(I*t))-1)/(exp(2*exp(I*t))+1)) and r(x) = ((cos(x*Pi/2)+sin(x*Pi/2))/Pi)*Integral_{t=0..2*Pi} F(x,t) then a(n) = numerator(r(n)) and A099617(n) = denominator(r(n)) for n>=1. - Peter Luschny, Aug 25 2015

EXAMPLE

1 + x + 1/2*x^2 + 1/3*x^3 + 5/24*x^4 + 2/15*x^5 + 61/720*x^6 + 17/315*x^7 + ...

1, 1, 1/2, 1/3, 5/24, 2/15, 61/720, 17/315, 277/8064, 62/2835, 50521/3628800, 1382/155925, 540553/95800320, ... = A099612/A099617

MAPLE

R := n -> (cos(n*Pi/2)+sin(n*Pi/2))*(4^(n+1)-2^(n+1))*((Zeta(0, -n, 3/4)-Zeta(0, -n, 1/4))/(2^(-n)-2)-Zeta(-n))/GAMMA(n+1):

[1, seq(numer(R(n)), n=1..19)]; # Peter Luschny, Aug 25 2015

MATHEMATICA

nn = 26; Numerator[CoefficientList[Series[Sec[x] + Tan[x], {x, 0, nn}], x]] (* T. D. Noe, Jul 24 2013 *)

CROSSREFS

Cf. A099617.

Sequence in context: A224494 A095998 A208927 * A233044 A142599 A068566

Adjacent sequences:  A099609 A099610 A099611 * A099613 A099614 A099615

KEYWORD

nonn,frac,changed

AUTHOR

N. J. A. Sloane, Nov 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 31 13:47 EDT 2015. Contains 261245 sequences.