login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046978 Numerators of Taylor series for exp(x)*sin(x). 8
0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Period 8: repeat [0, 1, 1, 1, 0, -1, -1, -1].

Lehmer sequence U_n for R=2 Q=1 [From Artur Jasinski, Oct 06 2008]

4*a(n+6) = period 8: repeat -4,-4,0,4,4,4,0,-4 = A189442(n+1) + A189442(n+5). - Paul Curtz, Jun 03 2011

REFERENCES

G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

LINKS

Table of n, a(n) for n=0..104.

Index to sequences with linear recurrences with constant coefficients, signature (0,0,0,-1).

FORMULA

Euler transform of length 8 sequence [ 1, 0, -1, -1, 0, 0, 0, 1]. - Michael Somos, Jul 16 2006

G.f.: x * (1 + x + x^2) / (1 + x^4) = x * (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^8)). a(-n) = a(n + 4) = -a(n). - Michael Somos, Jul 16 2006

a(n)=round((b^n - c^n)/(b - c)) where b = sqrt(2)-((1+i)/sqrt(2)), c = (1+i)/sqrt(2) [From Artur Jasinski, Oct 06 2008]

a(n) = sign(cos(Pi*(n-2)/4)). - Wesley Ivan Hurt, Oct 02 2013

EXAMPLE

x + x^2 + x^3 - x^5 - x^6 - x^7 + x^9 + x^10 + x^11 - x^13 - x^14 - ...

1*x +1*x^2 +1/3*x^3 -1/30*x^5 -1/90*x^6 -1/630*x^7 +1/22680*x^9 +1/113400*x^10+...

MAPLE

A046978 := n -> `if`(n mod 4 = 0, 0, (-1)^iquo(n, 4)): # Peter Luschny, Aug 21 2011

MATHEMATICA

a = -((1 + I)/Sqrt[2]) + Sqrt[2]; b = (1 + I)/Sqrt[2]; Table[ Round[(a^n - b^n)/(a - b)], {n, 0, 200}] [From Artur Jasinski, Oct 06 2008]

Table[Sign[Cos[Pi*(n-2)/4]], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 10 2013 *)

PROG

(PARI) a(n)=(n%4 > 0) * (-1)^(n\4) /* Michael Somos, Jul 16 2006 */

CROSSREFS

Cf. A046979.

Sequence in context: A098725 A166486 * A075553 A131729 A144609 A115517

Adjacent sequences:  A046975 A046976 A046977 * A046979 A046980 A046981

KEYWORD

sign,frac,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 00:41 EST 2014. Contains 252326 sequences.