OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..950
Eric Weisstein's World of Mathematics, Heptagonal Square Number.
Index entries for linear recurrences with constant coefficients, signature (0,0,1442,0,0,-1).
FORMULA
From Paul Weisenhorn, May 01 2009: (Start)
a(n+6) = 1442*a(n+3)-a(n) with
a(-2)=-77; a(-1)=-9; a(0)=-1; a(1)=1; a(2)=9; a(3)=77;
A = (721+sqrt(10)*228)^k; B = (721-sqrt(10)*228)^k;
a(3*k+1) = (7*(A-B)/sqrt(10)+2*(A+B))/4;
a(3*k+2) = (57*(A-B)/sqrt(10)+18*(A+B))/4;
a(3*k) = (7*(A-B)/sqrt(10)-2*(A+B))/4;
(End)
G.f.: x * (1 + x) * (1 + 8*x + 69*x^2 + 8*x^3 + x^4) / (1-1442*x^3 + x^6). - Ant King, Nov 11 2011
MAPLE
for n from 1 to 10000 do m:=sqrt((5*n*n-3*n)/2):
if (trunc(m)=m) then print(n, m): end if: end do: # Paul Weisenhorn, May 01 2009
MATHEMATICA
LinearRecurrence[{ 0, 0, 1442, 0, 0, -1 } , {1, 9, 77, 1519, 12987, 111035 }, 17] (* Ant King, Nov 11 2011 *)
PROG
(PARI) Vec(x*(x+1)*(x^4+8*x^3+69*x^2+8*x+1)/(x^6-1442*x^3+1) + O(x^50)) \\ Colin Barker, Jun 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved