login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046194 Heptagonal triangular numbers. 3
1, 55, 121771, 5720653, 12625478965, 593128762435, 1309034909945503, 61496776341083161, 135723357520344181225, 6376108764003055554511, 14072069153115290487843091, 661087708807868029661744485 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Ant King, Oct 18 2011: (Start)

lim(n->Infinity, u(2n+1)/u(2n)) = 1/2(2207+987*sqrt(5)),

lim(n->Infinity, u(2n)/u(2n-1)) = 1/2(47+21*sqrt(5)).

(End)

From Raphie Frank, Nov 30 2012: (Start)

Where L_n is a Lucas number and F_n is Fibonacci number:

lim(n->Infinity, u(2n+1)/u(2n)) = 1/2(L_16+F_16*sqrt(5)),

lim(n->Infinity, u(2n)/u(2n-1)) = 1/2(L_8+F_8*sqrt(5)),

a(n) = L_1*a(n-1)+ L_24*a(n-2) - L_24*a(n-3)- L_1*a(n-4) + L_1*a(n-5).

(End)

LINKS

Table of n, a(n) for n=1..12.

Eric Weisstein's World of Mathematics, Heptagonal Triangular Number

Index to sequences with linear recurrences with constant coefficients, signature (1,103682,-103682,-1,1).

FORMULA

The two bisections satisfy the same recurrence relation: a(n+2)=103682*a(n+1)-a(n)+18144 or a(n+1)=51841*a(n)+9072+2898*(320*a(n)^2+112*a(n)+9)^0.5. The g.f. satisfies f(z)=(z+55*z^2+18088*z^3+18088*z^4+55*z^5+z^6)/((1-z^2)*(1-103682*z^2+z^4)=1*z+55*z^2+121771*z^3+... - Richard Choulet, Sep 20 2007

From Ant King, Oct 18 2011: (Start)

a(n) = a(n-1)+103682a(n-2)-103682a(n-3)-a(n-4)+a(n-5)

a(n) = 1/80*((3-sqrt(5)*(-1)^n)*(2+sqrt(5))^(4n-2)+(3+sqrt(5)*(-1)^n)*(2-sqrt(5))^(4n-2)-14)

a(n) = floor(1/80*(3-sqrt(5)*(-1)^n)*(2+sqrt(5))^(4n-2))

G.f.: x(1+54*x+18034*x^2+54*x^3+x^4)/((1-x)(1-322*x+x^2)(1+322*x+x^2))

(End)

MATHEMATICA

LinearRecurrence[{1, 103682, -103682, -1, 1}, {1, 55, 121771, 5720653, 12625478965}, 12] (* Ant King, Oct 18 2011 *)

PROG

(PARI) a(n)=((3-sqrt(5)*(-1)^n)*(2+sqrt(5))^(4*n-2)+(3+sqrt(5)*(-1)^n)*(2-sqrt(5))^(4*n-2)-14)\/80 \\ Charles R Greathouse IV, Oct 18 2011

CROSSREFS

Cf. A039835, A046193.

Sequence in context: A196428 A231907 A027580 * A172808 A243315 A172856

Adjacent sequences:  A046191 A046192 A046193 * A046195 A046196 A046197

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 11:15 EDT 2014. Contains 246134 sequences.