login
A046195
Indices of heptagonal numbers (A000566) which are also squares (A000290).
7
1, 6, 49, 961, 8214, 70225, 1385329, 11844150, 101263969, 1997643025, 17079255654, 146022572641, 2880599856289, 24628274808486, 210564448483921, 4153822995125281, 35513955194580726, 303633788691241009, 5989809878370798481, 51211098762310597974
OFFSET
1,2
COMMENTS
(10 * a(n) - 3)^2 - 40 * (A046196(n))^2 = 9. - Ant King, Nov 12 2011
Also numbers n such that the n-th heptagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also indices of heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015
Also nonnegative integers y in the solutions to 2*x^2-5*y^2+4*x+3*y+2+2 = 0, the corresponding values of x being A251927. - Colin Barker, Dec 11 2014
LINKS
Eric Weisstein's World of Mathematics, Heptagonal Square Number.
FORMULA
From Paul Weisenhorn, May 01 2009: (Start)
Pell equations: r^2-10*s^2=1 with solution (19,6)
(10*n-3)^2-10*(2*m)^2=9; basic solutions: (7,-2); (7,+2)((57,18);
with x=10*n-3; y=2*m; A=(19+6*sqrt(10))^2; B=(19-6*sqrt(10))^2 one get
x(3*k)+sqrt(10)*y(3*k)=(7-2*sqrt(10))*A^k;
x(3*k+1)+sqrt(10)*y(3*k+1)=(7+2*sqrt(10))*A^k;
x(3*k+2)+sqrt(10)*y(3*k+2)=(57+18*sqrt(10))*A^k;
with the eigenvalues A=721+228*sqrt(10); B=721-228*sqrt(10)
one get the recurrences with 1442=4*19*19-2
x(k+6)=1442*x(k+3)-x(k); y(k+6)=1442*y(k+3)-y(k);
m(k+6)=1442*m(k+3)-m(k); n(k+6)=1442*n(k+3)-n(k)-432;
and the explicit formulas
x(3*k+1)=(7*(A^k+B^k)+2*sqrt(10)*(A^k-B^k))/2;
x(3*k+2)=(57*(A^k+B^k)+18*sqrt(10)*(A^k-B^k))/2;
x(3*k)=(7*(A^k+B^k)-2*sqrt(10)*(A^k-B^k))/2;
y(3*k+1)=(7*(A^k-B^k)/sqrt(10)+2*(A^k+B^k)/2;
y(3*k+2)=(57*(A^k-B^k)/sqrt(10)+18*(A^k+B^k))/2;
y(3*k)=(7*(A^k-B^k)/sqrt(10)-2*(A^k+B^k))/2;
n(k)=(x(k)+3)/10; m(k)=y(k)/2;
(End)
a(n) = +a(n-1) +1442*a(n-3) -1442*a(n-4) -a(n-6) +a(n-7). G.f.: -x*(1+5*x+43*x^2-530*x^3+43*x^4+5*x^5+x^6) / ( (x-1)*(x^6-1442*x^3+1) ). - R. J. Mathar, Aug 01 2010
a(n) = 1442*a(n-3) - a(n-6) - 432. - Ant King, Nov 12 2011
MAPLE
for n from 1 to 10000 do m:=sqrt((5*n^2-3*n)/2):
if (trunc(m)=m) then print(n, m): end if: end do: # Paul Weisenhorn, May 01 2009
MATHEMATICA
LinearRecurrence[{1 , 0, 1442, -1442, 0, -1, 1}, {1, 6, 49, 961, 8214, 70225, 1385329}, 17] (* Ant King, Nov 12 2011 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Colin Barker, Dec 11 2014
STATUS
approved