login
A190980
a(n) = 9*a(n-1) - 3*a(n-2), with a(0)=0, a(1)=1.
4
0, 1, 9, 78, 675, 5841, 50544, 437373, 3784725, 32750406, 283399479, 2452344093, 21220898400, 183631053321, 1589016784689, 13750257902238, 118985270766075, 1029616663187961, 8909594156393424, 77097497417976933, 667148694292612125, 5773045756379578326
OFFSET
0,3
FORMULA
G.f.: x/(1-9*x+3*x^2). - Philippe Deléham, Oct 12 2011
MATHEMATICA
LinearRecurrence[{9, -3}, {0, 1}, 50]
CoefficientList[Series[x/(1-9*x+3*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 14 2018 *)
PROG
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-9*x+3*x^2))) \\ G. C. Greubel, Jan 14 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 14 2018
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A046196 A231596 A350428 * A254657 A231590 A240797
KEYWORD
nonn
AUTHOR
STATUS
approved