login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036354 Heptagonal square numbers. 2
1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Ant King, Nov 11 2011: (Start)

This sequence is also the union of the three sequences defined by:

a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600.

a(3n-1) =  9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2.

a(3n) =  ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600.

Equivalent short forms for these subsequences are:

a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600).

a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)).

a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600).

(End)

LINKS

Table of n, a(n) for n=1..13.

Eric Weisstein's World of Mathematics, Heptagonal Square Number.

Index to sequences with linear recurrences with constant coefficients, signature (1,0,2079362,-2079362,0,-1,1).

FORMULA

O.g.f  -x*(1+80*x+5848*x^2+222070*x^3+5848*x^4+80*x^5+x^6) / ( (x-1)*(x^6-2079362*x^3+1) ).

With the first values, for n>=0 a(n+9):=2079363*u(a+6)-2079363*a(n+3)+a(n). On every bisection modulo 2 : a(n+1):=1039681*a(n)+116964+164388*sqrt(40*a(n)^2+9*a(n)). On every bisection modulo 2 : a(n+2)=2079362*a(n+1)-a(n)+233928. [From Richard Choulet, May 08 2009]

From Ant King, Nov 11 2011: (Start)

a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7).

a(n) = 2079362*a(n-3) - a(n-6) + 233928.

(End)

MAPLE

A036354 := proc(n)

if n <= 7 then

    op(n, [1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]);

else

    procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ;

end if;

end proc:

seq(A036354(n), n=1..12) ;

MATHEMATICA

LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *)

CROSSREFS

Cf. A046195, A046196.

Sequence in context: A237937 A060349 A212706 * A205887 A205199 A250612

Adjacent sequences:  A036351 A036352 A036353 * A036355 A036356 A036357

KEYWORD

nonn,easy

AUTHOR

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

EXTENSIONS

More terms from Eric W. Weisstein

One more term from Richard Choulet, May 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 22:37 EST 2014. Contains 252372 sequences.