This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036354 Heptagonal square numbers. 3
 1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Ant King, Nov 11 2011: (Start) This sequence is also the union of the three sequences defined by: a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600. a(3n-1) =  9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2. a(3n) =  ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600. Equivalent short forms for these subsequences are: a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600). a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)). a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600). (End) Also heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015 LINKS Colin Barker, Table of n, a(n) for n = 1..475 Eric Weisstein's World of Mathematics, Heptagonal Square Number. Index entries for linear recurrences with constant coefficients, signature (1,0,2079362,-2079362,0,-1,1). FORMULA O.g.f  -x*(1+80*x+5848*x^2+222070*x^3+5848*x^4+80*x^5+x^6) / ( (x-1)*(x^6-2079362*x^3+1) ). With the first values, for n>=0 a(n+9):=2079363*u(a+6)-2079363*a(n+3)+a(n). On every bisection modulo 2 : a(n+1):=1039681*a(n)+116964+164388*sqrt(40*a(n)^2+9*a(n)). On every bisection modulo 2 : a(n+2)=2079362*a(n+1)-a(n)+233928. - Richard Choulet, May 08 2009 From Ant King, Nov 11 2011: (Start) a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7). a(n) = 2079362*a(n-3) - a(n-6) + 233928. (End) MAPLE A036354 := proc(n) if n <= 7 then     op(n, [1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]); else     procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ; end if; end proc: seq(A036354(n), n=1..12) ; MATHEMATICA LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *) PROG (PARI) Vec(-x*(x^6+80*x^5+5848*x^4+222070*x^3+5848*x^2+80*x+1)/((x-1)*(x^6-2079362*x^3+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015 CROSSREFS Cf. A046195, A046196, A253920. Sequence in context: A237937 A060349 A212706 * A205887 A205199 A250612 Adjacent sequences:  A036351 A036352 A036353 * A036355 A036356 A036357 KEYWORD nonn,easy AUTHOR Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr) EXTENSIONS More terms from Eric W. Weisstein One more term from Richard Choulet, May 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .